Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
Backswimmers exhibit a high degree of mobility in water,and their different motion patterns have important implications for the design of micro-biomimetic underwater robots.This paper used three-dimensional high-speed...Backswimmers exhibit a high degree of mobility in water,and their different motion patterns have important implications for the design of micro-biomimetic underwater robots.This paper used three-dimensional high-speed cameras to extract the key points on the hind legs.The hind leg motion laws and the deformation laws of the setae were obtained in four motion patterns:rapid forward,cruising,in-motion turning,and in-place turning.The motion laws of each joint on the hind leg are modeled using a Fourier series.A kinematic model of hind legs was established based on the DH method,and the motion characteristics of hind legs under different motion patterns were analyzed.This paper provides basic data and theoretical models for micro-biomimetic robots.展开更多
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application...Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.展开更多
Geophysical mass flows are not only critical surface processes and landscape features on the Earth and other planets,but also rank among the most frequent and hazardous natural disasters on the Earth,posing significan...Geophysical mass flows are not only critical surface processes and landscape features on the Earth and other planets,but also rank among the most frequent and hazardous natural disasters on the Earth,posing significant threats to life,property,and the environment.Numerical simulation is one of the most effective methods for understanding the mobility characteristics of geophysical mass flows and assessing the associated risks.In this study,a sliding-block model is proposed,based on mixture theory and continuum mechanics.The model employs a simplified framework that integrates the principles of material characteristic homogenization,mechanical behavior differentiation,and property parameter inheritability.The model's performance has been validated through comparisons with the analytical solution of a one-dimensional dam-break problem,experimental results from aluminum bar collapse tests,USGS debris flow flume experiments,and a loess flowslide involving entrainment.The findings demonstrate the model's ability to accurately replicate key aspects,including the accumulation patterns of dry noncohesive grain collapse,the dynamics of saturated debris flows,and the behavior of loess flowslides.Crucial motion characteristics,such as accumulation thickness,runout distance,front position,front arrival time,and the location and depth of erodible material,are effectively captured.Direct comparisons and error analyses reveal that the model performs exceptionally well across all scenarios tested.The homogenized sliding-block model shows strong potential as a robust tool for simulating dynamic processes and assessing landslide risks.展开更多
In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical co...In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.展开更多
To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’...To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.展开更多
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa...Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.展开更多
The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimpl...The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft.展开更多
The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable...The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at th...The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.展开更多
The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the f...The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the flying-wing UG are different from those of "legacy gliders" which have revolving bodies, and these two factors strongly affect the dynamic performance of the vehicle. Considering these differences, we propose a new configuration of the internal actuators for the flying-wing UG and treat the flying-wing UG as a multi-body system when establishing its dynamic model. In this paper, a detailed dynamic model is presented using the Newton-Euler method for the flying-wing UG. Based on the full dynamic model, the effect of the internal actuators on the steady gliding motion of vehicle is studied theoretically, and the relationship between the state parameters of the steady gliding motion and the controlled variables is obtained by solving a set of equilibrium equations. Finally, the behaviors of two classical motion modes of the glider are analyzed based on the simulation. The simulation results demonstrate that the motion performance of the proposed flying-wing UG is satisfactory.展开更多
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events ...Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.展开更多
In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general mo...In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.展开更多
Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathe...Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software.展开更多
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu...An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.展开更多
Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Cons...Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.展开更多
The analysis method of lattice dynamics in classical physics is extended to study the properties of in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of P and SV wave...The analysis method of lattice dynamics in classical physics is extended to study the properties of in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of P and SV waves in the discrete model are first obtained by means of separating the characteristic equation of the motion equation, and then used to analyse the properties of P-and SV-homogeneous, inhomogeneous waves and other types of motion in the model. The dispersion characters, cut-off frequencies of P and SV waves, the polarization drift and appendent anisotropic property of wave motion caused by the discretization are finally discussed.展开更多
A geometric model of curved blood vessels is established based on some reasonable hypotheses; the nonlinear motion mechanics model of the curved blood vessel is established according to basic mechanics laws. This mode...A geometric model of curved blood vessels is established based on some reasonable hypotheses; the nonlinear motion mechanics model of the curved blood vessel is established according to basic mechanics laws. This model includes much more physiological factors. It couples the interaction of blood flow with mechanical factors such as the displacement, deformation, strain and stress etc. of the curved blood vessel. It is of great importance for investigating the circulation rules of the cardiovascular system and the nonlinear pulse wave propagation in curved blood vessels.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the National Natural Science Foundation of China(52475307)the Shandong Provincial Natural Science Foundation(ZR2023ME041).
文摘Backswimmers exhibit a high degree of mobility in water,and their different motion patterns have important implications for the design of micro-biomimetic underwater robots.This paper used three-dimensional high-speed cameras to extract the key points on the hind legs.The hind leg motion laws and the deformation laws of the setae were obtained in four motion patterns:rapid forward,cruising,in-motion turning,and in-place turning.The motion laws of each joint on the hind leg are modeled using a Fourier series.A kinematic model of hind legs was established based on the DH method,and the motion characteristics of hind legs under different motion patterns were analyzed.This paper provides basic data and theoretical models for micro-biomimetic robots.
基金supported by National Science Foundation Grant No.2123824.
文摘Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.
基金supported by the National Natural Science Foundation of China(Grant No.42090053)the National Key Research and Development Program of China(Grant No.2022YFC3003401).
文摘Geophysical mass flows are not only critical surface processes and landscape features on the Earth and other planets,but also rank among the most frequent and hazardous natural disasters on the Earth,posing significant threats to life,property,and the environment.Numerical simulation is one of the most effective methods for understanding the mobility characteristics of geophysical mass flows and assessing the associated risks.In this study,a sliding-block model is proposed,based on mixture theory and continuum mechanics.The model employs a simplified framework that integrates the principles of material characteristic homogenization,mechanical behavior differentiation,and property parameter inheritability.The model's performance has been validated through comparisons with the analytical solution of a one-dimensional dam-break problem,experimental results from aluminum bar collapse tests,USGS debris flow flume experiments,and a loess flowslide involving entrainment.The findings demonstrate the model's ability to accurately replicate key aspects,including the accumulation patterns of dry noncohesive grain collapse,the dynamics of saturated debris flows,and the behavior of loess flowslides.Crucial motion characteristics,such as accumulation thickness,runout distance,front position,front arrival time,and the location and depth of erodible material,are effectively captured.Direct comparisons and error analyses reveal that the model performs exceptionally well across all scenarios tested.The homogenized sliding-block model shows strong potential as a robust tool for simulating dynamic processes and assessing landslide risks.
基金supported in part by the National Natural Science Foundation of China(62133013,U22A2060)Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM01Z024)。
文摘In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.
基金co-supported the National Natural Science Foundation of China(No.52235010)the Heilongjiang Postdoctoral Fund(No.LBH-Z22136)the New Era Longjiang Excellent Master and Doctoral Dissertation Fund(No.LJYXL2022-057).
文摘To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.
基金funded by the General Program of the National Natural Science Foundation of China(No.42174070)the General Program of the Beijing Natural Science Foundation(No.8222035).
文摘Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.
基金Graduate Innovation and Practice Foundation of Beijing University of Aeronautics amd Astronautics
文摘The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft.
基金Supported by National Natural Science Foundation of China(Grant No.51275047)
文摘The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
文摘The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.
文摘The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the flying-wing UG are different from those of "legacy gliders" which have revolving bodies, and these two factors strongly affect the dynamic performance of the vehicle. Considering these differences, we propose a new configuration of the internal actuators for the flying-wing UG and treat the flying-wing UG as a multi-body system when establishing its dynamic model. In this paper, a detailed dynamic model is presented using the Newton-Euler method for the flying-wing UG. Based on the full dynamic model, the effect of the internal actuators on the steady gliding motion of vehicle is studied theoretically, and the relationship between the state parameters of the steady gliding motion and the controlled variables is obtained by solving a set of equilibrium equations. Finally, the behaviors of two classical motion modes of the glider are analyzed based on the simulation. The simulation results demonstrate that the motion performance of the proposed flying-wing UG is satisfactory.
基金Supported by National Natural Science Foundation of China Under Grant No.90715005,No.NCET-07-0186 and No.200802860007
文摘Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.
文摘In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.
基金Supported by National Natural Science Foundation under Grant No.50879014
文摘Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software.
基金supported by the National Natural Science Foundation of China(Grant No.51105386)the National Deep-Sea Technology Project of Development and Research(Grant No.DYXM-115-04-02-01)the Fundamental Research Funds for the Central Universities(Grant No.2011QNZT058)
文摘An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.
基金partly supported by the National Natural Science Foundation of China(61903034,U1913203,61973034,91120003)the Program for Changjiang Scholars and Innovative Research Team in University(IRT-16R06,T2014224)+1 种基金China Postdoctoral Science Foundation funded project(2019TQ0035)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.
基金The project sponsored by the Earthquake Science Foundation under Contract No. 90141
文摘The analysis method of lattice dynamics in classical physics is extended to study the properties of in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of P and SV waves in the discrete model are first obtained by means of separating the characteristic equation of the motion equation, and then used to analyse the properties of P-and SV-homogeneous, inhomogeneous waves and other types of motion in the model. The dispersion characters, cut-off frequencies of P and SV waves, the polarization drift and appendent anisotropic property of wave motion caused by the discretization are finally discussed.
基金Project supported by the National Natural Science Foundation of China(No.19872009)the Foundation of University Key Teachers by the Ministry of Education(No.GG-831-10005-1497)
文摘A geometric model of curved blood vessels is established based on some reasonable hypotheses; the nonlinear motion mechanics model of the curved blood vessel is established according to basic mechanics laws. This model includes much more physiological factors. It couples the interaction of blood flow with mechanical factors such as the displacement, deformation, strain and stress etc. of the curved blood vessel. It is of great importance for investigating the circulation rules of the cardiovascular system and the nonlinear pulse wave propagation in curved blood vessels.