The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of ...The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.展开更多
According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport...According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport characteristics of offshore sediment were used to take lnz/h,lnc_(a),c_(a),u,lnu and z/h as the independent variables.The multiple liner regression method was used to analyze the influence of the independent variables on the vertical distribution of sediment concentration.By using the method of significance test,the factors(ln𝑢)that have less influence on sediment concentration among 6 variables were eliminated.The correlation coefficient between the calculated sediment concentration and the measured sediment concentration indicates that the adopted variables can reflect the characteristics of vertical distribution of concentration of fine sediment near shore under complex dynamic conditions.展开更多
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r...Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects.展开更多
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for...The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.展开更多
As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enth...As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.展开更多
Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calcu...Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using ...In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]展开更多
The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high...The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.展开更多
The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of...The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of n-tuple Dirichlet series are obtained.展开更多
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltag...Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.展开更多
The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidi...The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.展开更多
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa...Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.展开更多
In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with i...In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.展开更多
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttin...Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.展开更多
New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability ...New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
基金supported by the National Key Program for Developing Basic Science(Nos.2022YFF0801702 and 2022YFE0106600)the National Natural Science Foundation of China(Nos.42175060 and 42175021)the Jiangsu Province Science Foundation(No.BK20250200302).
文摘The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.
文摘According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport characteristics of offshore sediment were used to take lnz/h,lnc_(a),c_(a),u,lnu and z/h as the independent variables.The multiple liner regression method was used to analyze the influence of the independent variables on the vertical distribution of sediment concentration.By using the method of significance test,the factors(ln𝑢)that have less influence on sediment concentration among 6 variables were eliminated.The correlation coefficient between the calculated sediment concentration and the measured sediment concentration indicates that the adopted variables can reflect the characteristics of vertical distribution of concentration of fine sediment near shore under complex dynamic conditions.
基金This study is supported by the National Key Research and Development Program of China(2017YFB0307500).
文摘Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects.
基金2024 Guangdong Philosophy and Social Science Planning Discipline Co-construction Project“Study on the Measurement of Economic Benefits and Path of High-Quality Development of Museums in Guangdong Province”(Project No.GD24XYS045)Key Project of the Social Sciences Division of Shenzhen Polytechnic University“Research on Strategies for Enhancing the Effectiveness of Non-State-Owned Museums in Shenzhen”(Project No.20240105)+1 种基金Shenzhen Polytechnic University’s Platform Construction Project“SZPU-Fangzhi Technology AI New Media R&D Centre”(Project No:602331019PQ)Open-ended Project of the Global Urban Civilization Model Research Institute of Southern University of Science and Technology in 2024,“Research on the Efficiency Enhancement Strategy of Non State owned Museums in Shenzhen from the Perspective of Urban Civilization Construction”(Project No.IGUC24C011)。
文摘The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.
文摘As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.
基金provided by the Korean Ministry of Environment and Eco Star Project
文摘Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
文摘In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]
基金supported by the National Key R&D Program of China (Grant No.2018YFC0407002)the National Natural Science Foundation of China(Grant Nos.11502033 and 51879014)
文摘The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.
基金supported by the National Natural Sci-ence Foundation of China(11501127)Natural Science Foundation of Guangdong Province(2016A030313686)+1 种基金the Training Program for Outstanding Young Teachers in University of Guangdong Province(312XCQ14564)Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(2013LYM0027,2014KQNCX068)
文摘The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of n-tuple Dirichlet series are obtained.
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60906038 and 61076082)
文摘Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.
基金The research of this author was supported by the National Natural Science Foundation of China,the JiangsuProvince Natural Science Foundation,the Jiangsu Province"333Engineering" Foundation and the Jiangsu Province"Qinglan Engineering" Foundation
文摘The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.
文摘Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.
文摘In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.
文摘Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.
文摘New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.