Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) ...Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.展开更多
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c...A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery.展开更多
Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing...Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing the fuzzy C-means clustering technique. We employ these agents collaborating each other to get recommendation for users. The results were evaluated by using MovieLens movie's rating data. It is shown that the algorithm is an effective metrics in collaborative filtering.展开更多
Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time F...Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time Fourier transform algorithm based on Morlet wavelet is applied to extract the power spectrum of DNA sequence. Then, threshold value determination method based on kernel fuzzy C-mean clustering is used to combine Signal to Noise Ratio (SNR) data of exon and intron into a sequence, classify the sequence into two types, calculate the weighted sum of two SNR clustering centers obtained and the discrimination threshold value. Finally, exon interval endpoint identification algorithm based on Takagi-Sugeno fuzzy identification model is presented to train Takagi-Sugeno model, optimize model parameters with Levenberg-Marquardt least square method, complete model and determine fuzzy rule. To verify the effectiveness of the proposed method, example tests are conducted on typical gene sequence sample data.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ...Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm.展开更多
User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-tr...User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization(QPSO)and Fuzzy C-Means Clustering.The main idea is:as energymeters at different transformer areas exhibit different zero-crossing shift features,we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations.The proposed method contributes in three main ways.First,based on the fuzzy C-means clustering algorithm(FCM),the quantum particle swarm optimization(PSO)is introduced to optimize the FCM clustering center and kernel parameters.The optimized FCM algorithm can improve clustering accuracy and efficiency.Since easily falls into a local optimum,an improved PSO optimization algorithm(IQPSO)is proposed.Secondly,considering that traditional FCM cannot solve the linear inseparability problem,this article uses a FCM(KFCM)that introduces kernel functions.Combinedwith the IQPSOoptimization algorithm used in the previous step,the IQPSO-KFCM algorithm is proposed.Simulation experiments verify the superiority of the proposed method.Finally,the proposed method is applied to transformer detection.The proposed method determines the class members of transformers and meters in the actual transformer area,and obtains results consistent with actual user-transformer relations.This fully shows that the proposed method has practical application value.展开更多
A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional...A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.展开更多
Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achiev...Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achieving higher clustering accuracy, which few studies have investigated. Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier evaluation and selection algorithm and tested it using real datasets. Our findings indicate that the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clustering.展开更多
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution...We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.展开更多
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ...A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM.展开更多
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over...These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.展开更多
A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer prefe...A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.展开更多
文摘Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.
基金supported by the National Natural Science Foundation of China(51675253)
文摘A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery.
基金Project supported by the National Natural Science Foundation of China (Grant No.69975001)
文摘Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing the fuzzy C-means clustering technique. We employ these agents collaborating each other to get recommendation for users. The results were evaluated by using MovieLens movie's rating data. It is shown that the algorithm is an effective metrics in collaborative filtering.
文摘Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time Fourier transform algorithm based on Morlet wavelet is applied to extract the power spectrum of DNA sequence. Then, threshold value determination method based on kernel fuzzy C-mean clustering is used to combine Signal to Noise Ratio (SNR) data of exon and intron into a sequence, classify the sequence into two types, calculate the weighted sum of two SNR clustering centers obtained and the discrimination threshold value. Finally, exon interval endpoint identification algorithm based on Takagi-Sugeno fuzzy identification model is presented to train Takagi-Sugeno model, optimize model parameters with Levenberg-Marquardt least square method, complete model and determine fuzzy rule. To verify the effectiveness of the proposed method, example tests are conducted on typical gene sequence sample data.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
文摘Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm.
基金supported by the National Natural Science Foundation of China(61671208).
文摘User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization(QPSO)and Fuzzy C-Means Clustering.The main idea is:as energymeters at different transformer areas exhibit different zero-crossing shift features,we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations.The proposed method contributes in three main ways.First,based on the fuzzy C-means clustering algorithm(FCM),the quantum particle swarm optimization(PSO)is introduced to optimize the FCM clustering center and kernel parameters.The optimized FCM algorithm can improve clustering accuracy and efficiency.Since easily falls into a local optimum,an improved PSO optimization algorithm(IQPSO)is proposed.Secondly,considering that traditional FCM cannot solve the linear inseparability problem,this article uses a FCM(KFCM)that introduces kernel functions.Combinedwith the IQPSOoptimization algorithm used in the previous step,the IQPSO-KFCM algorithm is proposed.Simulation experiments verify the superiority of the proposed method.Finally,the proposed method is applied to transformer detection.The proposed method determines the class members of transformers and meters in the actual transformer area,and obtains results consistent with actual user-transformer relations.This fully shows that the proposed method has practical application value.
文摘A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.
文摘Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achieving higher clustering accuracy, which few studies have investigated. Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier evaluation and selection algorithm and tested it using real datasets. Our findings indicate that the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clustering.
基金Project supported by the National Research Foundation(NRF) of Korea(Nos.2013009458 and 2013068127)
文摘We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
基金Project supported by the 15th Plan for National Defence Preventive Research Project (Grant No.413030201)
文摘A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM.
基金Supported by the National High Technology Research and Development Programme (No.2007AA12Z227) and the National Natural Science Foundation of China (No.40701146).
文摘These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.
文摘A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.