The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
This paper deals with the design and performance analysis of transmit precoder optimization for multiple input multiple output(MIMO) systems with limited feedback of channel state information.A capacity criterion base...This paper deals with the design and performance analysis of transmit precoder optimization for multiple input multiple output(MIMO) systems with limited feedback of channel state information.A capacity criterion based optimal codebook construction algorithm for MIMO precoded spatial multiplexing systems is presented. The optimal precoder structure combining precoding and power allocation is employed.Simulation results show that the capacity criteria based codebook can achieve higher capacity than that of equally power allocation based codebook of previous research.展开更多
This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress In...This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.展开更多
针对极端条件下光纤偏振光信号的偏振态旋转(Rotation of State of Polarization,RSOP)速度过快,以及本身存在的偏振模色散(Polarization Mode Dispersion,PMD)、残余色散、偏振相关损耗(Polarization Dependent Loss,PDL)、残余载波频...针对极端条件下光纤偏振光信号的偏振态旋转(Rotation of State of Polarization,RSOP)速度过快,以及本身存在的偏振模色散(Polarization Mode Dispersion,PMD)、残余色散、偏振相关损耗(Polarization Dependent Loss,PDL)、残余载波频率偏移(Carrier Frequency Offset,CFO)和载波相位噪声损伤(Carrier Phase Noise,CPN)严重影响通信质量的问题,提出一种基于多输入多输出系统盲均衡算法(Multiple Input Multiple Output-Constant Modulus Algorithm,MIMO-CMA)级联卡尔曼滤波器光纤信道损伤自适应均衡处理优化算法。首先,将包含各种光纤信道损伤的正交相移键控(Quadrature Phase Shift Keying,QPSK)信号使用MIMO-CMA完成残余色散与初步的偏振效应相关损伤均衡,再使用卡尔曼滤波器均衡残余的RSOP损伤、CFO及CPN。仿真结果表明,经过优化算法均衡后的输入信号,其星座图恢复效果良好,且能追踪的RSOP转速可以达到9 Mrad·s^(-1)以上,有效降低了算法的计算复杂度。展开更多
This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension C...This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.展开更多
The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding ...The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.展开更多
This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decompositio...This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.展开更多
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t...A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.展开更多
QR Decompositon with an M-algorithm(QRD-M) has good performance with low complexity,which is considered as a promising technique in Multiple-Input Multiple-Output(MIMO) detections.This paper presented a simplified QRD...QR Decompositon with an M-algorithm(QRD-M) has good performance with low complexity,which is considered as a promising technique in Multiple-Input Multiple-Output(MIMO) detections.This paper presented a simplified QRD-M algorithm for MIMO Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems.In the proposed scheme,each surviving path is expanded only to partial branches in order to carry out a limited tree search.The nodes are expanded on demand and sorted in a distributed manner,based on the novel expansion scheme which can pre-determine the children's ascending order by their local distances.Consequently,the proposed scheme can significantly decrease the complexity compared with conventional QRD-M algorithm.Hence,it is especially attractive to VLSI implementation of the high-throughput MIMO-OFDM systems.Simulation results prove that the proposed scheme can achieve a performance very close to the conventional QRD-M algorithm.展开更多
Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algor...Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.展开更多
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
基金The National Natural Science Foundationof China(No.60572157)
文摘This paper deals with the design and performance analysis of transmit precoder optimization for multiple input multiple output(MIMO) systems with limited feedback of channel state information.A capacity criterion based optimal codebook construction algorithm for MIMO precoded spatial multiplexing systems is presented. The optimal precoder structure combining precoding and power allocation is employed.Simulation results show that the capacity criteria based codebook can achieve higher capacity than that of equally power allocation based codebook of previous research.
文摘This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.
基金supported by the National Natural Science Foundation of China(6080105261271327)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1201039C)the China Postdoctoral Science Foundation (2012M521099)Hubei Key Laboratory of Intelligent Wireless Communications(IWC2012002)
文摘This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.
文摘The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.
文摘This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.
文摘A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.
基金Supported by the ‘Transformation of Scientific and Technological Achievements Project’ funded by the Department of Science and Technology of Jiangsu province,P.R. China (BA2006076)
文摘QR Decompositon with an M-algorithm(QRD-M) has good performance with low complexity,which is considered as a promising technique in Multiple-Input Multiple-Output(MIMO) detections.This paper presented a simplified QRD-M algorithm for MIMO Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems.In the proposed scheme,each surviving path is expanded only to partial branches in order to carry out a limited tree search.The nodes are expanded on demand and sorted in a distributed manner,based on the novel expansion scheme which can pre-determine the children's ascending order by their local distances.Consequently,the proposed scheme can significantly decrease the complexity compared with conventional QRD-M algorithm.Hence,it is especially attractive to VLSI implementation of the high-throughput MIMO-OFDM systems.Simulation results prove that the proposed scheme can achieve a performance very close to the conventional QRD-M algorithm.
文摘Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.