To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,whic...To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.展开更多
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper.Since satisfactory transient performance is an important factor,multiple models are requir...The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper.Since satisfactory transient performance is an important factor,multiple models are required as these parameters change abruptly in the parameter space.In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems.We demonstrate that the latter approach is better than the former.展开更多
We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the perf...We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.展开更多
Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (ML...Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.展开更多
A sequential linearized model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a para...A sequential linearized model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken in to track a desired temperature trajectory.The coefficients of the multiple transfer functions are calculated along the selected temperature trajectory by sequential linearization and the model is validated experimentally. The controller performance is studied on a small scale batch reactor.展开更多
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to g...Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to guarantee that the optimal control law exists. For MPC integrated with soft sensor, considering the soft constraints for critical variables additionally makes it more complicated and difficult for feasibility analysis and constraint adjustment. Therefore, the main contributions are that a linear programming approach is proposed for feasibility analysis, and the corresponding constraint adjustment method and procedure are given as well. The feasibility analysis gives considerations to the manipulated, secondary and critical variables, and the increment of manipulated variables as well. The feasibility analysis and the constraint adjustment are conducted in the entire control process and guarantee the existence of optimal control. In final, a simulation case confirms the contributions in this paper.展开更多
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is c...A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.展开更多
For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the...For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the region where the system parameters jump and improve the transient response,while another two adaptive models are used to guarantee the stability.Utilizing generalized minimum variance design method,it adopts the stochastic system estimation algorithm with optimal controller design method to identify the controller parameter directly.Finally,the global convergence is given.The simulation proves the effectives of the controller proposed.展开更多
When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of...When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.展开更多
This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences withi...This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.展开更多
The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to deve...The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an online SVR model updating strategy to track the change in the process characteristics efficiently with affordable computational burden. This is achieved by adding a new sample that violates the Karush–Kuhn–Tucker conditions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to develop an adaptive model-based control scheme, where model updating and control task perform alternately.The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for largemagnitude set point changes and variations in process parameters.展开更多
In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the p...In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.展开更多
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base...In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.展开更多
文摘To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
文摘The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper.Since satisfactory transient performance is an important factor,multiple models are required as these parameters change abruptly in the parameter space.In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems.We demonstrate that the latter approach is better than the former.
基金This work was supported by the National Natural Science Foundation of China.
文摘We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.
文摘Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.
文摘A sequential linearized model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken in to track a desired temperature trajectory.The coefficients of the multiple transfer functions are calculated along the selected temperature trajectory by sequential linearization and the model is validated experimentally. The controller performance is studied on a small scale batch reactor.
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
文摘Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to guarantee that the optimal control law exists. For MPC integrated with soft sensor, considering the soft constraints for critical variables additionally makes it more complicated and difficult for feasibility analysis and constraint adjustment. Therefore, the main contributions are that a linear programming approach is proposed for feasibility analysis, and the corresponding constraint adjustment method and procedure are given as well. The feasibility analysis gives considerations to the manipulated, secondary and critical variables, and the increment of manipulated variables as well. The feasibility analysis and the constraint adjustment are conducted in the entire control process and guarantee the existence of optimal control. In final, a simulation case confirms the contributions in this paper.
基金the National Fundamental Research Program of China (No. 2002CB312201)the State Key Program of National Natural Science of China (No. 60534010)+1 种基金the Funds for Creative Research Groups of China (No. 60521003)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0421)
文摘A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (Nos.60504010 and 60774015)the National High Technology Research and Development Program (863) of China (No.2008AA04Z129)+1 种基金the Disbursal Budget Program of Shanghai Municipal Education Commission of China (No.2008093) the Innovation Program of Shanghai Municipal Education Commission of China (No.09YZ241)
文摘For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the region where the system parameters jump and improve the transient response,while another two adaptive models are used to guarantee the stability.Utilizing generalized minimum variance design method,it adopts the stochastic system estimation algorithm with optimal controller design method to identify the controller parameter directly.Finally,the global convergence is given.The simulation proves the effectives of the controller proposed.
文摘When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.
基金supported by“MOST”for the support under Grants No.MOST 104-2632-B-468-001,No.MOST 103-2221-E-468-009-MY2,No.MOST 104-2221-E-182-008-MY2,No.MOST 105-2221-E-468-009,No.MOST 106-2221-E-468-023,No.MOST 106-2221-E-182-033Chang Gung Memorial Hospital under Grant No.CMRPD2C0053
文摘This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.
基金Supported by the National Basic Research Program of China(2012CB720500)Postdoctoral Science Foundation of China(2013M541964)Fundamental Research Funds for the Central Universities(13CX05021A)
文摘The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an online SVR model updating strategy to track the change in the process characteristics efficiently with affordable computational burden. This is achieved by adding a new sample that violates the Karush–Kuhn–Tucker conditions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to develop an adaptive model-based control scheme, where model updating and control task perform alternately.The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for largemagnitude set point changes and variations in process parameters.
基金the National Natural Science Foundation of China(61563032,61963025)The Open Foundation of the Key Laboratory of Gansu Advanced Control for Industrial Processes(2019KX01)The Project of Industrial support and guidance of Colleges and Universities in Gansu Province(2019C05).
文摘In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金Supported by National Natural Science Foundation of China(61873006,61673053)National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.