Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
We present the essential stellar parameters of the close visual triple system HD 2893 using Al-Wardat's method for analyzing binary and multiple star systems in conjunction with Kurucz's model atmospheres.This...We present the essential stellar parameters of the close visual triple system HD 2893 using Al-Wardat's method for analyzing binary and multiple star systems in conjunction with Kurucz's model atmospheres.This method accurately computes the spectrophotometric stellar masses through a combined synthetic spectral energy distribution approach that compares the results with observed data.The vigorous approach uses spectroscopic,photometric,and dynamical analysis to yield precise results.The method implements Gaia DR3 measurements and other measurements like those of Hipparcos and 2MASS All-Sky Catalog as a guide for the best fit between the synthetic spectra and observed photometry.The analysis gives precise spectrophotometric stellar masses for the system being M_(Sph)^(A)=1.20±0.07M⊙,M_(Sph)^(B)=1.09±0.06M⊙,and M_(Sph)^(C)=0.46±0.01M⊙.It shows that the three components are main sequence stars with an estimated age of around 1.0 Gyr.When integrated with the dynamical analysis,a new dynamical parallax for the system is obtained,π_(dyn)=13.8528±0.20 mas.Additionally,the discussion covers the formation and evolution of the triple system.展开更多
The extended trading close(ETC)provides institutional investors an opportunity to trade at the closing price after the regular trading session(RTS)and disclosing the order imbalances to other market participants.ETCs ...The extended trading close(ETC)provides institutional investors an opportunity to trade at the closing price after the regular trading session(RTS)and disclosing the order imbalances to other market participants.ETCs exist in the Nasdaq,the SSE STAR,the SZSE ChiNext and the TWSE.To help a risk-averse institutional investor take advantage of the RTS and the ETC for liquidation,we develop a multistage dynamic programming model including the ETC,and derive recursive solutions for the multiple trading days scenario with closed-form solutions for the scenario with only two trading days.We also verify that the ETC is able to mitigate extreme price movements caused by fast liquidation,which is also a goal of the ETC set out by the SSE STAR and the SZSE ChiNext.Finally,we derive three results.First,an institutional investor can reduce execution costs after the introduction of the ETC.Second,a critical trading day exists,and to avoid prematurely revealing trading intentions,the investor should not trade in the ETC until such day.Third,even though the ETC orders submitted by the investor are unfilled,implementation of the ETC encourages the investor to change the liquidation strategy in the RTS,which reduces extreme price movements.In summary,the practical implications of this paper are that the investor should not trade during the ETC on the front few days to avoid prematurely revealing the investor’s trading intention by unfilled orders in the ETC and that introducing the ETC can reduce liquidation costs and extreme price movements.展开更多
BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple pri...BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple primary cancers(MPC)has also increased.The rarity of MPC and the absence of sensitive and specific dia-gnostic markers often lead to missed or incorrect diagnoses.It is,therefore,of vital importance to improve the vigilance of clinicians and the accurate diagnosis of this disease.Patients with GI malignancies face a higher relative risk of deve-loping additional primary malignant tumors compared to those with other systemic tumors.Vigilant monitoring and follow-up are crucial,especially for high-risk groups,which include older adults,men,those with addictions to alcohol and tobacco,those with a family history of tumors,and those who have undergone radiotherapy.CASE SUMMARY In this article,we report three cases of MPC,each involving malignant tumors of the GI tract as the initial primary carcinoma,offering insights that may aid in effectively managing similar cases.CONCLUSION Patients with GI malignancies face a higher MPC risk.Developing screening and follow-up protocols may enhance detection and treatment outcomes.展开更多
Combined with elastic network model(ENM),the perturbation response scanning(PRS)has emerged as a robust technique for pinpointing allosteric interactions within proteins.Here,we proposed the PRS analysis of drug-targe...Combined with elastic network model(ENM),the perturbation response scanning(PRS)has emerged as a robust technique for pinpointing allosteric interactions within proteins.Here,we proposed the PRS analysis of drug-target networks(DTNs),which could provide a promising avenue in network medicine.We demonstrated the utility of the method by introducing a deep learning and network perturbation-based framework,for drug repurposing of multiple sclerosis(MS).First,the MS comorbidity network was constructed by performing a random walk with restart algorithm based on shared genes between MS and other diseases as seed nodes.Then,based on topological analysis and functional annotation,the neurotransmission module was identified as the“therapeutic module”of MS.Further,perturbation scores of drugs on the module were calculated by constructing the DTN and introducing the PRS analysis,giving a list of repurposable drugs for MS.Mechanism of action analysis both at pathway and structural levels screened dihydroergocristine as a candidate drug of MS by targeting a serotonin receptor of se-rotonin 2B receptor(HTR2B).Finally,we established a cuprizone-induced chronic mouse model to evaluate the alteration of HTR2B in mouse brain regions and observed that HTR2B was significantly reduced in the cuprizone-induced mouse cortex.These findings proved that the network perturbation modeling is a promising avenue for drug repurposing of MS.As a useful systematic method,our approach can also be used to discover the new molecular mechanism and provide effective candidate drugs for other complex diseases.展开更多
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple rol...Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.展开更多
This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play p...Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement.Mammalian sperm-associated antigen 17(SPAG17)encodes a conserved axonemal protein of cilia and flagella,forming part of the C1a projection of the central apparatus,with functions related to ciliary/flagellar motility,skeletal growth,and male fertility.This study investigated two novel homozygous SPAG17 mutations(M1:NM_206996.2,c.829+1G>T,p.Asp212_Glu276del;and M2:c.2120del,p.Leu707*)identified in four infertile patients from two consanguineous Pakistani families.These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa.Quantitative real-time polymerase chain reaction(PCR)of patients’spermatozoa also revealed a significant decrease in SPAG17 mRNA expression,and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella.However,no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients.Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls.Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17(SPATA17),a component of the C1a projection,and sperm-associated antigen 6(SPAG6),a marker of the spring layer,revealed disrupted expression of both proteins in the patients’spermatozoa.Altogether,these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme,expanding the phenotypic spectrum of SPAG17 mutations in humans.展开更多
Objective:Multiple myeloma(MM)is a hematologically malignant clonal plasma cell disease.This study aims to explore the association between immunophenotypes and prognosis in patients with MM,to determine whether the ex...Objective:Multiple myeloma(MM)is a hematologically malignant clonal plasma cell disease.This study aims to explore the association between immunophenotypes and prognosis in patients with MM,to determine whether the expression of CD45 and CD200 is related to the prognosis of newly diagnosed MM(NDMM)patients,and to evaluate the significance of the combined expression of CD45 and CD200 in NDMM.Methods:A total of 123 NDMM patients admitted to Shengjing Hospital of China Medical University from July 2015 to August 2019 were enrolled.Five key immunophenotypic markers(including CD38,CD138,CD45,CD56,and CD200)were screened through flow cytometry and identified using random forest analysis and univariate Cox regression analysis.Patients were divided into 3 groups:Group A,CD45 and CD200 double-positive;Group B,CD45 or CD200 single-positive;Group C,CD45 and CD200 double-negative.Kaplan-Meier curves were used to analyze overall survival(OS)and progression-free survival(PFS)across groups.Multivariate Cox regression was performed to evaluate prognostic factors,and a nomogram was constructed based on these results.Results:The OS and PFS of single-positive groups for CD38,CD138,CD45,CD56,and CD200 were all shorter than those of their respective single-negative groups(all P<0.05).Significant differences were observed in OS(P<0.001)and PFS(P=0.001)among Groups A,B,and C.Group A had shorter OS and PFS(all P=0.001)compared to the Group B+C(cases from Group B and Group C were combined).CD45 and CD200 double-positive was an independent prognostic factor for NDMM[hazard ratio(HR)=2.178,95%confidence interval(CI)1.048 to 4.529;P=0.037].The nomogram and calibration curves constructed from multivariate Cox regression analysis demonstrated good concordance(concordance index=0.706;95%CI 0.661 to 0.751).Conclusion:NDMM patients with double-positive expression of CD45 and CD200 have significantly shorter OS and PFS.Compared with the use of either marker alone,the combined assessment of CD45 and CD200 may provide better prognostic stratification for MM patients.展开更多
The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b...The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa...This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.展开更多
Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesi...Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesis remains unclear,the progress in multimodal imaging(MMI)has enhanced our understanding of MEWDS.Most cases of MEWDS are idiopathic,lacking a definite cause,and can spontaneously recover;these are what we term classic MEWDS.Consequently,MEWDS is often referred to as the“common cold of the retina”.Simultaneously,patients with other disorders may present with varying degrees of manifestations similar to MEWDS.The resemblance in clinical or imaging findings can lead to misdiagnosis and inappropriate treatment.These MEWDS-like presentations are actually caused by other systemic or ocular disorders with diverse mechanisms.Thus,they differ from classic MEWDS in certain aspects.Using the keywords“MEWDSlike”and“Secondary MEWDS”,we searched for all relevant studies published in the PubMed database from January 2021 to January 2024.Subsequently,we retrospectively summarized the clinical and imaging characteristics of MEWDS,along with the manifestations in other diseases that resembled those of MEWDS,and compared classic MEWDS with these similar presentations.Based on our review,we classified such similar presentations under other conditions into two categories and summarized their features for differential diagnosis.We recommend paying close attention to patients suspected of having MEWDS,as there may be more serious systemic or ocular disorders that require prompt treatment.展开更多
Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have m...Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have markedly increased overall survival.Many patients with MM eventually experience relapse or become treatment-refractory1.Patients with relapsed or refractory multiple myeloma(RRMM)become progressively more challenging to manage and have poor prognosis2.展开更多
Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of ...Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs.展开更多
Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory v...Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory versus degenerative dichotomy.This was based on a broad misconception regarding essentially all neurodegenerative conditions,depicting the degenerative process as passive and immune-independent occurring as a late byproduct of active inflammation in the central nervous system(CNS),which is(solely)systemically driven.展开更多
Objectives:Suicidal ideation(SI)among university students is a growing concern,influenced by anxiety,depression,and bullying.However,family closeness and peer support may act as protective factors,reducing the risk of...Objectives:Suicidal ideation(SI)among university students is a growing concern,influenced by anxiety,depression,and bullying.However,family closeness and peer support may act as protective factors,reducing the risk of SI.Therefore,this study aims to investigate the key factors influencing SI among university students,focusing on the effects of anxiety,depression,and bullying,along with the roles of family closeness and peer support.The research also explores the interactions and mechanisms between these variables.Methods:A sample of 318 university students was surveyed,evaluating six main factors:anxiety,depression,bullying,family closeness,peer support,and SI.Using the Structural Equation Modeling(SEM)and Artificial Neural Networks(ANN)approach,both compensatory and non-compensatory relationships were examined.Results:Anxiety,depression,and bullying significantly contribute to SI,with depression mediating the link between anxiety,bullying,and SI.Additionally,family closeness moderates the effects of anxiety and bullying on SI,while peer supportmoderates the effects of depression and bullying.Themultilayer perceptron analysis identifies peer support as the most influential predictor,followed by bullying,family closeness,depression,and anxiety.Conclusion:The study identifies anxiety,depression,and bullying as key factors influencing suicidal ideation(SI)among university students.Family closeness and peer support act as protective factors,moderating the effects of these variables on SI.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology,funded by the National Aeronautics and Space Administration and the National Science Foundation。
文摘We present the essential stellar parameters of the close visual triple system HD 2893 using Al-Wardat's method for analyzing binary and multiple star systems in conjunction with Kurucz's model atmospheres.This method accurately computes the spectrophotometric stellar masses through a combined synthetic spectral energy distribution approach that compares the results with observed data.The vigorous approach uses spectroscopic,photometric,and dynamical analysis to yield precise results.The method implements Gaia DR3 measurements and other measurements like those of Hipparcos and 2MASS All-Sky Catalog as a guide for the best fit between the synthetic spectra and observed photometry.The analysis gives precise spectrophotometric stellar masses for the system being M_(Sph)^(A)=1.20±0.07M⊙,M_(Sph)^(B)=1.09±0.06M⊙,and M_(Sph)^(C)=0.46±0.01M⊙.It shows that the three components are main sequence stars with an estimated age of around 1.0 Gyr.When integrated with the dynamical analysis,a new dynamical parallax for the system is obtained,π_(dyn)=13.8528±0.20 mas.Additionally,the discussion covers the formation and evolution of the triple system.
文摘The extended trading close(ETC)provides institutional investors an opportunity to trade at the closing price after the regular trading session(RTS)and disclosing the order imbalances to other market participants.ETCs exist in the Nasdaq,the SSE STAR,the SZSE ChiNext and the TWSE.To help a risk-averse institutional investor take advantage of the RTS and the ETC for liquidation,we develop a multistage dynamic programming model including the ETC,and derive recursive solutions for the multiple trading days scenario with closed-form solutions for the scenario with only two trading days.We also verify that the ETC is able to mitigate extreme price movements caused by fast liquidation,which is also a goal of the ETC set out by the SSE STAR and the SZSE ChiNext.Finally,we derive three results.First,an institutional investor can reduce execution costs after the introduction of the ETC.Second,a critical trading day exists,and to avoid prematurely revealing trading intentions,the investor should not trade in the ETC until such day.Third,even though the ETC orders submitted by the investor are unfilled,implementation of the ETC encourages the investor to change the liquidation strategy in the RTS,which reduces extreme price movements.In summary,the practical implications of this paper are that the investor should not trade during the ETC on the front few days to avoid prematurely revealing the investor’s trading intention by unfilled orders in the ETC and that introducing the ETC can reduce liquidation costs and extreme price movements.
基金Supported by Gansu Provincial Natural Science Foundation,No.21JR1RA010In-Hospital Research Fund of Gansu Provincial Hospital,No.23GSSYD-5.
文摘BACKGROUND The incidence of malignant gastrointestinal(GI)tumors is increasing,and advancements in medical care have significantly improved patient survival rates.As a result,the number of cases involving multiple primary cancers(MPC)has also increased.The rarity of MPC and the absence of sensitive and specific dia-gnostic markers often lead to missed or incorrect diagnoses.It is,therefore,of vital importance to improve the vigilance of clinicians and the accurate diagnosis of this disease.Patients with GI malignancies face a higher relative risk of deve-loping additional primary malignant tumors compared to those with other systemic tumors.Vigilant monitoring and follow-up are crucial,especially for high-risk groups,which include older adults,men,those with addictions to alcohol and tobacco,those with a family history of tumors,and those who have undergone radiotherapy.CASE SUMMARY In this article,we report three cases of MPC,each involving malignant tumors of the GI tract as the initial primary carcinoma,offering insights that may aid in effectively managing similar cases.CONCLUSION Patients with GI malignancies face a higher MPC risk.Developing screening and follow-up protocols may enhance detection and treatment outcomes.
基金supported by the National Natural Science Foundation of China(Grant Nos.:32271292,31872723,32200778,and 22377089)the Jiangsu Students Innovation and Entrepre-neurship Training Program,China(Program No.:202210285081Z)+6 种基金the Project of MOE Key Laboratory of Geriatric Diseases and Immunology,China(Project No.:JYN202404)Proj-ect Funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,Natural Science Foundation of Jiangsu Province,China(Project No.:BK20220494)Suzhou Medical and Health Technology Innovation Project,China(Grant No.:SKY2022107)the Clinical Research Center of Neuro-logical Disease in The Second Affiliated Hospital of Soochow University,China(Grant No.:ND2022A04)State Key Laboratory of Drug Research(Grant No.:SKLDR-2023-KF-05)Jiangsu Shuang-chuang Program for Doctor,Young Science Talents Promotion Project of Jiangsu Science and Technology Association(Program No.:TJ-2023-019)Young Science Talents Promotion Project of Suzhou Science and Technology Association,Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases,and startup funding(Grant Nos.:NH21500221,NH21500122,and NH21500123)to Qifei Cong.
文摘Combined with elastic network model(ENM),the perturbation response scanning(PRS)has emerged as a robust technique for pinpointing allosteric interactions within proteins.Here,we proposed the PRS analysis of drug-target networks(DTNs),which could provide a promising avenue in network medicine.We demonstrated the utility of the method by introducing a deep learning and network perturbation-based framework,for drug repurposing of multiple sclerosis(MS).First,the MS comorbidity network was constructed by performing a random walk with restart algorithm based on shared genes between MS and other diseases as seed nodes.Then,based on topological analysis and functional annotation,the neurotransmission module was identified as the“therapeutic module”of MS.Further,perturbation scores of drugs on the module were calculated by constructing the DTN and introducing the PRS analysis,giving a list of repurposable drugs for MS.Mechanism of action analysis both at pathway and structural levels screened dihydroergocristine as a candidate drug of MS by targeting a serotonin receptor of se-rotonin 2B receptor(HTR2B).Finally,we established a cuprizone-induced chronic mouse model to evaluate the alteration of HTR2B in mouse brain regions and observed that HTR2B was significantly reduced in the cuprizone-induced mouse cortex.These findings proved that the network perturbation modeling is a promising avenue for drug repurposing of MS.As a useful systematic method,our approach can also be used to discover the new molecular mechanism and provide effective candidate drugs for other complex diseases.
基金supported by the National Natural Science Foundation of China,Nos.82060219,82271234the Natural Science Foundation of Jiangxi Province,Nos.20212ACB216009,20212BAB216048+1 种基金Jiangxi Province Thousands of Plans,No.jxsq2019201023Youth Team Project of the Second Affiliated Hospital of Nanchang University,No.2019YNTD12003(all to FH)。
文摘Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
文摘A survey of recent progress on the multiplicity and stability problems for closed characteristics on compact convex hypersurfaces in R^(2n) is given.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金supported by the National Natural Science Foundation of China(No.82171599 and No.32270901)the National Key Research and Developmental Program of China(2022YFC2702601 and 2022YFA0806303)the Global Select Project(DJKLX-2022010)of the Institute of Health and Medicine,Hefei Comprehensive National Science Center.
文摘Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement.Mammalian sperm-associated antigen 17(SPAG17)encodes a conserved axonemal protein of cilia and flagella,forming part of the C1a projection of the central apparatus,with functions related to ciliary/flagellar motility,skeletal growth,and male fertility.This study investigated two novel homozygous SPAG17 mutations(M1:NM_206996.2,c.829+1G>T,p.Asp212_Glu276del;and M2:c.2120del,p.Leu707*)identified in four infertile patients from two consanguineous Pakistani families.These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa.Quantitative real-time polymerase chain reaction(PCR)of patients’spermatozoa also revealed a significant decrease in SPAG17 mRNA expression,and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella.However,no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients.Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls.Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17(SPATA17),a component of the C1a projection,and sperm-associated antigen 6(SPAG6),a marker of the spring layer,revealed disrupted expression of both proteins in the patients’spermatozoa.Altogether,these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme,expanding the phenotypic spectrum of SPAG17 mutations in humans.
基金supported by the National Natural Science Foundation,China(81870166).
文摘Objective:Multiple myeloma(MM)is a hematologically malignant clonal plasma cell disease.This study aims to explore the association between immunophenotypes and prognosis in patients with MM,to determine whether the expression of CD45 and CD200 is related to the prognosis of newly diagnosed MM(NDMM)patients,and to evaluate the significance of the combined expression of CD45 and CD200 in NDMM.Methods:A total of 123 NDMM patients admitted to Shengjing Hospital of China Medical University from July 2015 to August 2019 were enrolled.Five key immunophenotypic markers(including CD38,CD138,CD45,CD56,and CD200)were screened through flow cytometry and identified using random forest analysis and univariate Cox regression analysis.Patients were divided into 3 groups:Group A,CD45 and CD200 double-positive;Group B,CD45 or CD200 single-positive;Group C,CD45 and CD200 double-negative.Kaplan-Meier curves were used to analyze overall survival(OS)and progression-free survival(PFS)across groups.Multivariate Cox regression was performed to evaluate prognostic factors,and a nomogram was constructed based on these results.Results:The OS and PFS of single-positive groups for CD38,CD138,CD45,CD56,and CD200 were all shorter than those of their respective single-negative groups(all P<0.05).Significant differences were observed in OS(P<0.001)and PFS(P=0.001)among Groups A,B,and C.Group A had shorter OS and PFS(all P=0.001)compared to the Group B+C(cases from Group B and Group C were combined).CD45 and CD200 double-positive was an independent prognostic factor for NDMM[hazard ratio(HR)=2.178,95%confidence interval(CI)1.048 to 4.529;P=0.037].The nomogram and calibration curves constructed from multivariate Cox regression analysis demonstrated good concordance(concordance index=0.706;95%CI 0.661 to 0.751).Conclusion:NDMM patients with double-positive expression of CD45 and CD200 have significantly shorter OS and PFS.Compared with the use of either marker alone,the combined assessment of CD45 and CD200 may provide better prognostic stratification for MM patients.
文摘The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
文摘This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.
文摘Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesis remains unclear,the progress in multimodal imaging(MMI)has enhanced our understanding of MEWDS.Most cases of MEWDS are idiopathic,lacking a definite cause,and can spontaneously recover;these are what we term classic MEWDS.Consequently,MEWDS is often referred to as the“common cold of the retina”.Simultaneously,patients with other disorders may present with varying degrees of manifestations similar to MEWDS.The resemblance in clinical or imaging findings can lead to misdiagnosis and inappropriate treatment.These MEWDS-like presentations are actually caused by other systemic or ocular disorders with diverse mechanisms.Thus,they differ from classic MEWDS in certain aspects.Using the keywords“MEWDSlike”and“Secondary MEWDS”,we searched for all relevant studies published in the PubMed database from January 2021 to January 2024.Subsequently,we retrospectively summarized the clinical and imaging characteristics of MEWDS,along with the manifestations in other diseases that resembled those of MEWDS,and compared classic MEWDS with these similar presentations.Based on our review,we classified such similar presentations under other conditions into two categories and summarized their features for differential diagnosis.We recommend paying close attention to patients suspected of having MEWDS,as there may be more serious systemic or ocular disorders that require prompt treatment.
基金supported by grant from the National Natural Science Foundation of China(Grant No.82300231).
文摘Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have markedly increased overall survival.Many patients with MM eventually experience relapse or become treatment-refractory1.Patients with relapsed or refractory multiple myeloma(RRMM)become progressively more challenging to manage and have poor prognosis2.
基金supported by the National Natural Science Foundation of China(22379165,U21A20284)Natural Science Foundation of Hunan Province(2023JJ40704).
文摘Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs.
文摘Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory versus degenerative dichotomy.This was based on a broad misconception regarding essentially all neurodegenerative conditions,depicting the degenerative process as passive and immune-independent occurring as a late byproduct of active inflammation in the central nervous system(CNS),which is(solely)systemically driven.
文摘Objectives:Suicidal ideation(SI)among university students is a growing concern,influenced by anxiety,depression,and bullying.However,family closeness and peer support may act as protective factors,reducing the risk of SI.Therefore,this study aims to investigate the key factors influencing SI among university students,focusing on the effects of anxiety,depression,and bullying,along with the roles of family closeness and peer support.The research also explores the interactions and mechanisms between these variables.Methods:A sample of 318 university students was surveyed,evaluating six main factors:anxiety,depression,bullying,family closeness,peer support,and SI.Using the Structural Equation Modeling(SEM)and Artificial Neural Networks(ANN)approach,both compensatory and non-compensatory relationships were examined.Results:Anxiety,depression,and bullying significantly contribute to SI,with depression mediating the link between anxiety,bullying,and SI.Additionally,family closeness moderates the effects of anxiety and bullying on SI,while peer supportmoderates the effects of depression and bullying.Themultilayer perceptron analysis identifies peer support as the most influential predictor,followed by bullying,family closeness,depression,and anxiety.Conclusion:The study identifies anxiety,depression,and bullying as key factors influencing suicidal ideation(SI)among university students.Family closeness and peer support act as protective factors,moderating the effects of these variables on SI.