Mobile phones equipped with multiple wireless interfaces can increase their goodput performance by making use of concurrent transmissions over multiple paths, enabled by the Multipath TCP (MPTCP). However, utilizing...Mobile phones equipped with multiple wireless interfaces can increase their goodput performance by making use of concurrent transmissions over multiple paths, enabled by the Multipath TCP (MPTCP). However, utilizing MPTCP for data delivery may generally result in higher energy consumption, while the battery power of a mobile phone is limited. Thus, how to optimize the energy usage becomes very crucial and urgent. In this paper, we propose MPTCP-QE, a nov- el quality of experience (QoE)-driven energy-aware multipath content delivery approach for MPTCP-based mobile phones. The main idea of MPTCP-QE is described as follows: it first provides an application rate-aware energy-efficient subflow management strategy to tradeoff throughput performance and energy consumption for mobile phones; then uses an available bandwidth-aware congestion window fast recovery strategy to make a sender avoid unnecessary stow-start and utilize wireless resource quickly; and further introduces a novel receiver-driven energy-efficient SACK strategy to help a receiver possible to detect SACK loss timely and trigger loss recovery in a more energy-efficient way. The simulation results show that with the MPTCP-QE, the energy usage is enhanced while the performance level is maintained compared to existing MPTCP solutions.展开更多
Studies have shown that packet reordering is common, especially in satellite networks where there are link level retransmissions and multipath routing. Moreover, traditional satellite networks exhibit high corruption ...Studies have shown that packet reordering is common, especially in satellite networks where there are link level retransmissions and multipath routing. Moreover, traditional satellite networks exhibit high corruption rates causing packet losses. Reordering and corruption of packets decrease the TCP performance of a network, mainly because it leads to overestimation of the congestion in the network. We consider satellite networks and analyze the performance of such networks when reordering and corruption of packets occurs. We propose a solution that could significantly improve the performance of the network when reordering and corruption of packets occur in a satellite network. We report results of our simulation experiments, which support this claim.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61562044, 61262014the Natural Science Foundation of Jiangxi Province under Grant No. 20161BAB212046+2 种基金the Project of Soft Science Research Plan of Jiangxi Province under Grant No. 20161BBA10010the Science and Technology Research Project of Jiangxi Provincial Department of Education (GJJ150319)the Higher School Teaching Reform Research Subject of Jiangxi Province(JXJG-15-2-35)
文摘Mobile phones equipped with multiple wireless interfaces can increase their goodput performance by making use of concurrent transmissions over multiple paths, enabled by the Multipath TCP (MPTCP). However, utilizing MPTCP for data delivery may generally result in higher energy consumption, while the battery power of a mobile phone is limited. Thus, how to optimize the energy usage becomes very crucial and urgent. In this paper, we propose MPTCP-QE, a nov- el quality of experience (QoE)-driven energy-aware multipath content delivery approach for MPTCP-based mobile phones. The main idea of MPTCP-QE is described as follows: it first provides an application rate-aware energy-efficient subflow management strategy to tradeoff throughput performance and energy consumption for mobile phones; then uses an available bandwidth-aware congestion window fast recovery strategy to make a sender avoid unnecessary stow-start and utilize wireless resource quickly; and further introduces a novel receiver-driven energy-efficient SACK strategy to help a receiver possible to detect SACK loss timely and trigger loss recovery in a more energy-efficient way. The simulation results show that with the MPTCP-QE, the energy usage is enhanced while the performance level is maintained compared to existing MPTCP solutions.
文摘Studies have shown that packet reordering is common, especially in satellite networks where there are link level retransmissions and multipath routing. Moreover, traditional satellite networks exhibit high corruption rates causing packet losses. Reordering and corruption of packets decrease the TCP performance of a network, mainly because it leads to overestimation of the congestion in the network. We consider satellite networks and analyze the performance of such networks when reordering and corruption of packets occurs. We propose a solution that could significantly improve the performance of the network when reordering and corruption of packets occur in a satellite network. We report results of our simulation experiments, which support this claim.