The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and materia...The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.展开更多
In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RS...In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.展开更多
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi...To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.展开更多
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n...This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve...In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis...This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors.展开更多
This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the soluti...This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the solutions distribution to be a normal distribution because the distributions of solutions are rarely normal distributions for real-world problems.The developed method was applied to nineteen multiobjective test functions that are widely used to evaluate the characteristics and performance of optimization approaches.The results showed that this method adapted the design space to an appropriate design space where the solution existence probability was high.The optimization performance achieved using the developed method was higher than that of the conventional methods.Furthermore,the developed method was applied to the conceptual design of an unmanned spacecraft to confirm its validity in real-world design and multidisciplinaryoptimization problems.The results showed that the Pareto solutions of the developed method were superior to those of conventional methods.Additionally,the optimization efficiency with the developed method was improved by more than 1.4 times over that of the conventional methods.In this regard,the developed method has the potential to be applied to complicated real-world optimization problems to achieve better performance and efficiency.展开更多
Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control s...Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.展开更多
The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along ...The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.展开更多
实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX...实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.展开更多
In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In ...In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.展开更多
Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularizatio...Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.展开更多
Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded un...Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.展开更多
Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and fiv...Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and five groups of constraints areproposed.A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorialoptimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjectiveevaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local searchstrategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues.TheBBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change ofelite number in evolutionary process.Its optimisation result provides a group of feasible nondominated two-level distributionschemes.展开更多
A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit...A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.展开更多
In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel referenc...In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.展开更多
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially...For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms.展开更多
The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators beco...The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.展开更多
基金Supported by Direktorat Riset dan Pengembangan(Directorate of Research and Development)Universitas Indonesia(NKB-690/UN2.RST/HKP.05.00/2022).
文摘The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.
基金supported by the National Youth Top-notch Talent Support Program of China(Grant No.00389335)the National Natural Science Foundation of China(Grant No.52378392)the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province(Grant No.00387088).
文摘In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.
文摘This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金supported in part by National Natural Science Foundation of China(62106230,U23A20340,62376253,62176238)China Postdoctoral Science Foundation(2023M743185)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007)。
文摘In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
文摘This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors.
基金co-supported by the National Research Foundation of Korea(No.NRF-2021R1A2C2013363)grant funded by the Korea government(Ministry of Science and ICT,MSIT)the Convergence Security Core Talent Training Business Support Program(No.IITP-2023-RS-2023-00266615)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)funded by the MSIT(Ministry of Science and ICT),Korea.
文摘This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the solutions distribution to be a normal distribution because the distributions of solutions are rarely normal distributions for real-world problems.The developed method was applied to nineteen multiobjective test functions that are widely used to evaluate the characteristics and performance of optimization approaches.The results showed that this method adapted the design space to an appropriate design space where the solution existence probability was high.The optimization performance achieved using the developed method was higher than that of the conventional methods.Furthermore,the developed method was applied to the conceptual design of an unmanned spacecraft to confirm its validity in real-world design and multidisciplinaryoptimization problems.The results showed that the Pareto solutions of the developed method were superior to those of conventional methods.Additionally,the optimization efficiency with the developed method was improved by more than 1.4 times over that of the conventional methods.In this regard,the developed method has the potential to be applied to complicated real-world optimization problems to achieve better performance and efficiency.
基金Supported by the National Natural Science Foundation of China(No.52005441)Natural Science Foundation of Zhejiang Province(No.LQ21E050017)+4 种基金Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001)State Key Laboratory of Mechanical System and Vibration(No.MSV202316)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(Nos.2022C01122,2022C01132)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RFA2023007)the Research Project of ZJUT(No.GYY-ZH2023075).
文摘Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.
基金supported by the National Natural Science Foundation of China under grant 52077122 and by the Taishan Industrial Experts Program.
文摘The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.
文摘实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.
基金The National Natural Science Foundation of China(No.51036002,51076027)the Key Project of Ministry of Education of China(No.108060)
文摘In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.
基金supported by the Natural Science Foundation of China(No.61273179)Department of Education,Science and Technology Research Project of Hubei Province of China(No.D20131206,No.20141304)
文摘Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.
文摘Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.
文摘Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and five groups of constraints areproposed.A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorialoptimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjectiveevaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local searchstrategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues.TheBBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change ofelite number in evolutionary process.Its optimisation result provides a group of feasible nondominated two-level distributionschemes.
基金Supported by Program for New Century Excellent Talents in University (070003)the Natural Science Foundation of Anhui Province (070414154)~~
文摘A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.
基金The National Natural Science Foundation of China(No.51306082,51476027)
文摘In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.
基金supported by the National Natural Sciences Foundation of China(61603069,61533005,61522304,U1560102)the National Key Research and Development Program of China(2017YFA0700300)
文摘For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms.
基金National Natural Science Foundation of China (50675009) International Science & Technology Cooperation Program of China (2010DFA72540)
文摘The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.