This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved ...This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved for multiobjective programming defined by a continuous one-to-one cone-quasiconvex mapping on a compact convex set of alternatives. During the proof, the generalized saddle theorem plays a key role.展开更多
To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degrad...To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degradation of the fuel cell and the battery.Regarding the issues that power fluctuations damage the fuel cells'lifespan and high-current charging and discharging lead to battery capacity decay,the first layer of the strategy adopts locally weighted scatterplot smoothing(LOWESS)to smooth the output power of the fuel cells and prevent the battery from operating under high-current conditions.The second layer considers the uneven degree of degradation among the fuel cells and employs the dandelion optimizer(DO)algorithm to solve the objective function with an aging adaptive factor,optimizing the efficiency and lifespan.Meanwhile,the DO algorithm is enhanced by tent chaotic mapping and differential variation to improve the convergence speed and accuracy.Compared with the equivalent hydrogen consumption minimization strategy(ECMS)and the equal distribution strategy,the proposed strategy improves the average operating efficiency of the fuel cells,effectively reduces the degradation of the fuel cells and the capacity degradation of the battery,and maintains the performance consistency among the fuel cells.展开更多
Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of v...Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of virtual environments.However,traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments.This study addresses these limitations through a proposed realtime dynamic multiobjective(RDMO)path-planning algorithm based on an enhanced A^(*) framework.The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real time.Simulation experiments are conducted using real-world road network data and benchmarked against mainstream hybrid approaches based on genetic algorithms(GAs)and simulated annealing(SA).The results show that the computational speed of the RDMO algorithm is 88 and 73 times faster than that of the GA-and SA-based solutions,respectively,while the total planned path length is reduced by 58%and 33%,respectively.In addition,the RDMO algorithm also shows excellent responsiveness to dynamic changes in map connectivity and can achieve real-time replanning with a minimal computational overhead.The research results prove that the RDMO algorithm provides a robust and efficient solution for multiobjective path planning in games and robotics applications and has a great application potential in improving system performance and user experience in related fields in the future.展开更多
Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These ...Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects.展开更多
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n...This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.展开更多
The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates ...The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.展开更多
In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In ...In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.展开更多
Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularizatio...Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.展开更多
A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit...A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.展开更多
In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel referenc...In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.展开更多
In this papert the theory of major efficiency for multiobjective programmingis established.The major-efficient solutions and weakly major-efficient solutions of multiobjective programming given here are Pareto efficie...In this papert the theory of major efficiency for multiobjective programmingis established.The major-efficient solutions and weakly major-efficient solutions of multiobjective programming given here are Pareto efficient solutions of the same multiobjectiveprogramming problem, but the converse is not true. In a ceratin sense , these solutionsare in fact better than any other Pareto efficient solutions. Some basic theorems whichcharacterize major-efficient solutions and weakly major-efficient solutions of multiobjective programming are stated and proved. Furthermore,the existence and some geometricproperties of these solutions are studied.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming...In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.展开更多
An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and s...An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.展开更多
We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of...We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.展开更多
This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS). The designed controller, which is based on the ...This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS). The designed controller, which is based on the human-simulated intelligent control (HSIC) method, builds up different control modes to monitor and control the CDPS during four kinetic phases consisting of an initial oscillation phase, a swing-up phase, a posture adjustment phase, and a balance control phase. For the approach, the original method of inequalities-based (MoI) multiobjective genetic algorithm (MMGA) is extended and applied to the case study which uses a set of performance indices that includes the cart displacement over the rail boundary, the number of swings, the settling time, the overshoot of the total energy, and the control effort. The simulation results show good responses of the CDPS with the controllers obtained by the proposed approach.展开更多
In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-poin...In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-pointed, non-convex and non-closed into a finite union of disjoint strictly supported pointed convex cones, we discuss the continuous perturbations of the decision space. Several sufficient conditions for the continuity of the sets of majorly efficiellt points and solutions are given.展开更多
In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or in...In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.展开更多
A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,suffi...A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,sufficient optimality conditions and MondWeir type dual theorems are derived for a class of nondifferentiable multiobjective fractional programming problems in which every component of the objective function and each constraint function contain a term involving the support function of a compact convex set.展开更多
New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebr...New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(70071026)
文摘This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved for multiobjective programming defined by a continuous one-to-one cone-quasiconvex mapping on a compact convex set of alternatives. During the proof, the generalized saddle theorem plays a key role.
基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0161)the National Natural Science Foundation of China(Grant Nos.61374153 and 61403199).
文摘To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degradation of the fuel cell and the battery.Regarding the issues that power fluctuations damage the fuel cells'lifespan and high-current charging and discharging lead to battery capacity decay,the first layer of the strategy adopts locally weighted scatterplot smoothing(LOWESS)to smooth the output power of the fuel cells and prevent the battery from operating under high-current conditions.The second layer considers the uneven degree of degradation among the fuel cells and employs the dandelion optimizer(DO)algorithm to solve the objective function with an aging adaptive factor,optimizing the efficiency and lifespan.Meanwhile,the DO algorithm is enhanced by tent chaotic mapping and differential variation to improve the convergence speed and accuracy.Compared with the equivalent hydrogen consumption minimization strategy(ECMS)and the equal distribution strategy,the proposed strategy improves the average operating efficiency of the fuel cells,effectively reduces the degradation of the fuel cells and the capacity degradation of the battery,and maintains the performance consistency among the fuel cells.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950).
文摘Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of virtual environments.However,traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments.This study addresses these limitations through a proposed realtime dynamic multiobjective(RDMO)path-planning algorithm based on an enhanced A^(*) framework.The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real time.Simulation experiments are conducted using real-world road network data and benchmarked against mainstream hybrid approaches based on genetic algorithms(GAs)and simulated annealing(SA).The results show that the computational speed of the RDMO algorithm is 88 and 73 times faster than that of the GA-and SA-based solutions,respectively,while the total planned path length is reduced by 58%and 33%,respectively.In addition,the RDMO algorithm also shows excellent responsiveness to dynamic changes in map connectivity and can achieve real-time replanning with a minimal computational overhead.The research results prove that the RDMO algorithm provides a robust and efficient solution for multiobjective path planning in games and robotics applications and has a great application potential in improving system performance and user experience in related fields in the future.
基金supported by the National Key R&D Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.52238009 and 52208344).
文摘Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects.
文摘This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.
基金supported by grants PID2020-120308RB-I00 and PID2023-147802OB-I00 funded by MICIU/AEI/10.13039/501100011033FEDER,UE,by Aligning Science Across Parkinson’s(ref.ASAP-020505)through the Michael J.Fox Foundation for Parkinson’s Research+1 种基金by CiberNed Intramural Collaborative Projects(ref.PI2020/09)by the Spanish Fundación Mutua Madrile?a de Investigación Médica(to JLL)。
文摘The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.
基金The National Natural Science Foundation of China(No.51036002,51076027)the Key Project of Ministry of Education of China(No.108060)
文摘In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.
基金supported by the Natural Science Foundation of China(No.61273179)Department of Education,Science and Technology Research Project of Hubei Province of China(No.D20131206,No.20141304)
文摘Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.
基金Supported by Program for New Century Excellent Talents in University (070003)the Natural Science Foundation of Anhui Province (070414154)~~
文摘A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.
基金The National Natural Science Foundation of China(No.51306082,51476027)
文摘In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.
文摘In this papert the theory of major efficiency for multiobjective programmingis established.The major-efficient solutions and weakly major-efficient solutions of multiobjective programming given here are Pareto efficient solutions of the same multiobjectiveprogramming problem, but the converse is not true. In a ceratin sense , these solutionsare in fact better than any other Pareto efficient solutions. Some basic theorems whichcharacterize major-efficient solutions and weakly major-efficient solutions of multiobjective programming are stated and proved. Furthermore,the existence and some geometricproperties of these solutions are studied.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
文摘In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.
文摘An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.
文摘We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.
基金supported by the National Science Council, Taiwan(No. 96-2221-E-327-027, No. 96-2221-E-327-005-MY2, and No. 96-2628-E-327-004-MY3).
文摘This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS). The designed controller, which is based on the human-simulated intelligent control (HSIC) method, builds up different control modes to monitor and control the CDPS during four kinetic phases consisting of an initial oscillation phase, a swing-up phase, a posture adjustment phase, and a balance control phase. For the approach, the original method of inequalities-based (MoI) multiobjective genetic algorithm (MMGA) is extended and applied to the case study which uses a set of performance indices that includes the cart displacement over the rail boundary, the number of swings, the settling time, the overshoot of the total energy, and the control effort. The simulation results show good responses of the CDPS with the controllers obtained by the proposed approach.
文摘In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-pointed, non-convex and non-closed into a finite union of disjoint strictly supported pointed convex cones, we discuss the continuous perturbations of the decision space. Several sufficient conditions for the continuity of the sets of majorly efficiellt points and solutions are given.
基金supported by the Scientific Research Fun of Sichuan Normal University(11ZDL01)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.
基金National Natural Science Foundation of China(No.11071110)
文摘A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,sufficient optimality conditions and MondWeir type dual theorems are derived for a class of nondifferentiable multiobjective fractional programming problems in which every component of the objective function and each constraint function contain a term involving the support function of a compact convex set.
基金Supported by the NSF of Shaanxi Provincial Educational Department(06JK152)
文摘New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.