We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platfo...We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platform.Through the self-imaging effect of multimode interference(MMI)coupler,the demultiplexing function for 1310 nm and 1550 nm wavelengths is implemented.After that,three parallel SWG-based slots are inserted into the MMI section so that the effective refractive index of the modes can be engineered and thus the beat length can be adjusted.Importantly,these three SWG slots significantly reduce the length of the device,which is much shorter than the length of traditional MMI-based wavelength demultiplexers.Ultimately,by using the PSO algorithm,the equivalent refractive index and width of the SWG in a certain range are optimized to achieve the best performance of the wavelength demultiplexer.It has been verified that the device footprint is only 2×30.68μm^(2),and 1 dB bandwidths of larger than 120 nm are acquired at 1310 nm and 1550 nm wavelengths.Meanwhile,the transmitted spectrum shows that the insertion loss(IL)values are below 0.47 dB at both wavelengths when the extinction ratio(ER)values are above 12.65 dB.This inverse design approach has been proved to be efficient in increasing bandwidth and reducing device length.展开更多
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler ...An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.展开更多
A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with...A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.展开更多
An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is...An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.展开更多
In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper repre...In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper represents the considerations of the optimal design of the silica-on-silicon based MMI optical coupler for better performance. For that, we have illustrated the simulation results on a particular case of the 4x4 silica-on-silicon based MMI coupler. From the simulation results, it is seen that the performance of the MMI coupler depends on multiple width and length combinations of the MMI waveguide. The results also show that the width of the multimode waveguide could not be too small or too large for optimal performance, and at the widths, 100~tm, 120~tm and 130~tm, the performance could be optimized and be almost 0.62 - 0.64 in a given length range. Finally, the results have been compared with the optical coupler presently available in the market and show that the silica-on-silicon based MMI coupler is much more efficient in terms of losses and the performance associated with it and the size of the coupler.展开更多
We propose and demonstrate a performance-enhanced optical quantizer by inverse design.An adjoint shape cooptimization method is used to optimize the boundaries of the optical quantizer,aiming to reduce the insertion l...We propose and demonstrate a performance-enhanced optical quantizer by inverse design.An adjoint shape cooptimization method is used to optimize the boundaries of the optical quantizer,aiming to reduce the insertion loss(IL),improve the uniformity,and increase the bandwidth of the effective number of bits(ENOB).Meanwhile,the optimized shape maintains its deep ultraviolet(DUV)photolithography fabrication capability.We fabricate the device on a commercial silicon-on-insulator(SOI)platform.Measurement results show that the IL is reduced from 0.85 to 0.35 d B,and the uniformity is optimized from 1.21 to 0.24 d B at 1550 nm.The maximum ENOB increases to 3.31 bit,which is very close to the ideal value of 3.32 bit,and the bandwidth of the ENOB>3 bit is expanded to more than 50 nm.展开更多
基金supported by the National Natural Science Foundation of China(No.61505160)the Innovation Capability Support Program of Shaanxi(No.2018KJXX-042)+2 种基金the Natural Science Basic Research Program of Shaanxi(No.2019JM-084)the State Key Laboratory of Transient Optics and Photonics(No.SKLST202108)the Graduate Innovation and Practical Ability Training Project of Xi’an Shiyou University(No.YCS22213190)。
文摘We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platform.Through the self-imaging effect of multimode interference(MMI)coupler,the demultiplexing function for 1310 nm and 1550 nm wavelengths is implemented.After that,three parallel SWG-based slots are inserted into the MMI section so that the effective refractive index of the modes can be engineered and thus the beat length can be adjusted.Importantly,these three SWG slots significantly reduce the length of the device,which is much shorter than the length of traditional MMI-based wavelength demultiplexers.Ultimately,by using the PSO algorithm,the equivalent refractive index and width of the SWG in a certain range are optimized to achieve the best performance of the wavelength demultiplexer.It has been verified that the device footprint is only 2×30.68μm^(2),and 1 dB bandwidths of larger than 120 nm are acquired at 1310 nm and 1550 nm wavelengths.Meanwhile,the transmitted spectrum shows that the insertion loss(IL)values are below 0.47 dB at both wavelengths when the extinction ratio(ER)values are above 12.65 dB.This inverse design approach has been proved to be efficient in increasing bandwidth and reducing device length.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200202)the National Natural Science Foundation of China(Grant No.61804148)
文摘An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.
基金This work was supported by the National Natural Science Foundation of China (No. 69990540).
文摘A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.
文摘An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.
文摘In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper represents the considerations of the optimal design of the silica-on-silicon based MMI optical coupler for better performance. For that, we have illustrated the simulation results on a particular case of the 4x4 silica-on-silicon based MMI coupler. From the simulation results, it is seen that the performance of the MMI coupler depends on multiple width and length combinations of the MMI waveguide. The results also show that the width of the multimode waveguide could not be too small or too large for optimal performance, and at the widths, 100~tm, 120~tm and 130~tm, the performance could be optimized and be almost 0.62 - 0.64 in a given length range. Finally, the results have been compared with the optical coupler presently available in the market and show that the silica-on-silicon based MMI coupler is much more efficient in terms of losses and the performance associated with it and the size of the coupler.
基金supported by the National Natural Science Foundation of China(Nos.61935003 and 62275029)。
文摘We propose and demonstrate a performance-enhanced optical quantizer by inverse design.An adjoint shape cooptimization method is used to optimize the boundaries of the optical quantizer,aiming to reduce the insertion loss(IL),improve the uniformity,and increase the bandwidth of the effective number of bits(ENOB).Meanwhile,the optimized shape maintains its deep ultraviolet(DUV)photolithography fabrication capability.We fabricate the device on a commercial silicon-on-insulator(SOI)platform.Measurement results show that the IL is reduced from 0.85 to 0.35 d B,and the uniformity is optimized from 1.21 to 0.24 d B at 1550 nm.The maximum ENOB increases to 3.31 bit,which is very close to the ideal value of 3.32 bit,and the bandwidth of the ENOB>3 bit is expanded to more than 50 nm.