期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multiobjective Differential Evolution for Higher-Dimensional Multimodal Multiobjective Optimization 被引量:1
1
作者 Jing Liang Hongyu Lin +2 位作者 Caitong Yue Ponnuthurai Nagaratnam Suganthan Yaonan Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1458-1475,共18页
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve... In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions. 展开更多
关键词 Benchmark functions diversity measure evolution-ary algorithms multimodal multiobjective optimization.
在线阅读 下载PDF
A Novel Multiobjective Fireworks Algorithm and Its Applications to Imbalanced Distance Minimization Problems 被引量:4
2
作者 Shoufei Han Kun Zhu +4 位作者 MengChu Zhou Xiaojing Liu Haoyue Liu Yusuf Al-Turki Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1476-1489,共14页
Recently,multimodal multiobjective optimization problems(MMOPs)have received increasing attention.Their goal is to find a Pareto front and as many equivalent Pareto optimal solutions as possible.Although some evolutio... Recently,multimodal multiobjective optimization problems(MMOPs)have received increasing attention.Their goal is to find a Pareto front and as many equivalent Pareto optimal solutions as possible.Although some evolutionary algorithms for them have been proposed,they mainly focus on the convergence rate in the decision space while ignoring solutions diversity.In this paper,we propose a new multiobjective fireworks algorithm for them,which is able to balance exploitation and exploration in the decision space.We first extend a latest single-objective fireworks algorithm to handle MMOPs.Then we make improvements by incorporating an adaptive strategy and special archive guidance into it,where special archives are established for each firework,and two strategies(i.e.,explosion and random strategies)are adaptively selected to update the positions of sparks generated by fireworks with the guidance of special archives.Finally,we compare the proposed algorithm with eight state-of-the-art multimodal multiobjective algorithms on all 22 MMOPs from CEC2019 and several imbalanced distance minimization problems.Experimental results show that the proposed algorithm is superior to compared algorithms in solving them.Also,its runtime is less than its peers'. 展开更多
关键词 Adaptive strategy fireworks algorithm multimodal multiobjective optimization problems(MMOP)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部