An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic ...An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic square,denoted by MS(n),if the entries of A are distinct.A magic square A of order n is normalif the entries of A are n^2 consecutive integers.Let A^*d denote the matrix obtained by raising each elementof A to the d-th power.The matrix A is a d-multimagic square,dcnoted by MS(n,d),if A^*e is an MS(n)for 1≤e≤d.In this paper we investigate the existence of normal bimagic squares of order 2u and prove that thereexists a normal bimagic square of order 2u,where u and 6 are coprime and u≥5.展开更多
基金This paper is supported by the National Natural Science Foundation of China(Nos.11871417,11501181)Science Foundation for Youths(Grant No.2014QK05)Ph.D.(Grant No.qd14140)of Henan Normal University.
文摘An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic square,denoted by MS(n),if the entries of A are distinct.A magic square A of order n is normalif the entries of A are n^2 consecutive integers.Let A^*d denote the matrix obtained by raising each elementof A to the d-th power.The matrix A is a d-multimagic square,dcnoted by MS(n,d),if A^*e is an MS(n)for 1≤e≤d.In this paper we investigate the existence of normal bimagic squares of order 2u and prove that thereexists a normal bimagic square of order 2u,where u and 6 are coprime and u≥5.