期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation of Automatic Speech Recognition Systems via the Multilingual Deep Neural Network Modeling Methods for a Very Low-Resource Language, Chaha 被引量:1
1
作者 Tessfu Geteye Fantaye Junqing Yu Tulu Tilahun Hailu 《Journal of Signal and Information Processing》 2020年第1期1-21,共21页
Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency a... Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency and some of its phonological, morphological, and orthographic features challenge the development and initiatives in the area of ASR. By considering these challenges, this study is the first endeavor, which analyzed the characteristics of the language, prepared speech corpus, and developed different ASR systems. A small 3-hour read speech corpus was prepared and transcribed. Different basic and rounded phone unit-based speech recognizers were explored using multilingual deep neural network (DNN) modeling methods. The experimental results demonstrated that all the basic phone and rounded phone unit-based multilingual models outperformed the corresponding unilingual models with the relative performance improvements of 5.47% to 19.87% and 5.74% to 16.77%, respectively. The rounded phone unit-based multilingual models outperformed the equivalent basic phone unit-based models with relative performance improvements of 0.95% to 4.98%. Overall, we discovered that multilingual DNN modeling methods are profoundly effective to develop Chaha speech recognizers. Both the basic and rounded phone acoustic units are convenient to build Chaha ASR system. However, the rounded phone unit-based models are superior in performance and faster in recognition speed over the corresponding basic phone unit-based models. Hence, the rounded phone units are the most suitable acoustic units to develop Chaha ASR systems. 展开更多
关键词 Automatic SPEECH Recognition multilingual DNN modeling Methods Basic PHONE ACOUSTIC UNITS Rounded PHONE ACOUSTIC UNITS Chaha
在线阅读 下载PDF
A Survey of Multilingual Neural Machine Translation Based on Sparse Models
2
作者 Shaolin Zhu Dong Jian Deyi Xiong 《Tsinghua Science and Technology》 2025年第6期2399-2418,共20页
Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively M... Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively MNMT,when based on sparse models,offers significant improvements in parameter efficiency and reduces interference compared to its dense model counterparts.Various methods have been proposed to leverage sparse models for enhancing translation quality.However,the lack of a thorough survey has hindered the identification and further investigation of the most promising approaches.To address this gap,we provide an exhaustive examination of the current research landscape in massively MNMT,with a special emphasis on sparse models.Initially,we categorize the various sparse model-based approaches into distinct classifications.We then delve into each category in detail,elucidating their fundamental modeling principles,core issues,and the challenges they face.Wherever possible,we conduct comparative analyses to assess the strengths and weaknesses of different methodologies.Moreover,we explore potential future research avenues for MNMT based on sparse models.This survey serves as a valuable resource for both newcomers and established experts in the field of MNMT,particularly those interested in sparse model applications. 展开更多
关键词 neural machine translation sparse models multilingual dense model
原文传递
基于交替语言数据重构方法的跨语言文本相似度模型
3
作者 王轶 王坤宁 刘铭 《吉林大学学报(理学版)》 北大核心 2025年第2期551-558,共8页
针对现有多语言模型在预训练过程中对多语言数据集的利用效率低,导致跨语言上下文学习能力不足,进而产生语言偏差的问题,提出一种基于交替语言数据重构方法的跨语言文本相似度模型.该方法通过对称地替换平行语料中的中英文词语,形成重... 针对现有多语言模型在预训练过程中对多语言数据集的利用效率低,导致跨语言上下文学习能力不足,进而产生语言偏差的问题,提出一种基于交替语言数据重构方法的跨语言文本相似度模型.该方法通过对称地替换平行语料中的中英文词语,形成重构的预训练文本对,并利用上述文本对对多语言大模型mBERT(BERT-based-multilingual)进行基于数据重构的针对性预训练和微调处理.为验证该模型的可行性,在联合国平行语料数据集上进行实验,实验结果表明,该模型的相似度查准率优于mBERT和其他两种基线模型,其不仅可以进一步提高跨语言信息检索的准确性,并且可以降低多语言自然语言处理任务的研究成本. 展开更多
关键词 mBERT模型 文本相似度 多语言预训练模型 大模型微调
在线阅读 下载PDF
基于Sailor2和RAG的东博会新闻问答系统
4
作者 秦董洪 顾佳凯 +1 位作者 裴胜玉 蒋玉桂 《广西民族大学学报(自然科学版)》 2025年第2期83-91,共9页
该文以中国—东盟博览会新闻为研究对象,结合开源的东南亚多语言大语言模型Sailor2与检索增强生成技术,构建了一个高效的多语种新闻问答系统。该研究采用的核心技术包括:基于多策略的新闻文本分块方法、融合密集向量与稀疏向量的混合检... 该文以中国—东盟博览会新闻为研究对象,结合开源的东南亚多语言大语言模型Sailor2与检索增强生成技术,构建了一个高效的多语种新闻问答系统。该研究采用的核心技术包括:基于多策略的新闻文本分块方法、融合密集向量与稀疏向量的混合检索机制,以及基于语义相似度的路由策略。系统性能评估方面,采用DeepEval框架从上下文精确度、上下文召回率、回答相关度和可信度4个维度进行了全面评估。实验结果表明,在语义分块策略下,该系统在上下文精确度、上下文召回率、回答相关度等指标上得到了较好的提升。同时,该系统能够支持中文、泰语、越南语等多种语言的问答,展现出良好的跨语言能力。该研究丰富了大语言模型在新闻领域的应用案例,为中国—东盟博览会相关新闻的多语种智能问答提供了一种可行的技术路径。 展开更多
关键词 大语言模型 检索增强生成 多语种新闻问答 中国—东盟博览会
在线阅读 下载PDF
基于多模态联合建模的端到端语音到文本翻译
5
作者 欧佳乐 昝红英 许鸿飞 《小型微型计算机系统》 北大核心 2025年第10期2338-2344,共7页
通过联合建模或多任务学习,可以利用大规模的语音识别和文本翻译数据来提升端到端语音到文本翻译的性能.然而,现有大多数方法通常需要对语音翻译模型进行架构调整,或者依赖多阶段的预训练和微调.此外,语音与文本之间的模态差异使得使用... 通过联合建模或多任务学习,可以利用大规模的语音识别和文本翻译数据来提升端到端语音到文本翻译的性能.然而,现有大多数方法通常需要对语音翻译模型进行架构调整,或者依赖多阶段的预训练和微调.此外,语音与文本之间的模态差异使得使用共享编码器同时处理二者变得具有挑战性.为了解决这些问题,本文提出了一个简单的多模态联合建模框架.该框架将语音翻译和文本翻译的联合建模视作多语言神经机器翻译建模,并在自注意层中引入模态感知的相对位置编码,使用模态感知的单一编码器来同时处理语音和文本编码,而无需复杂化模型架构.然后结合大规模语音识别数据,和提出的基于翻译损失方法筛选的文本翻译数据,进行多模态联合建模训练.在两个基准测试中的实验结果表明,与基线方法相比,使用单编码器方法对内部和外部的语音识别及文本翻译数据进行联合建模后,可以显著提高多个语音翻译任务上双向翻译(从英语和到英语)的性能. 展开更多
关键词 端到端语音到文本翻译 多模态联合建模 多语言神经机器翻译 相对位置编码
在线阅读 下载PDF
XLM-RoBERTa应用于多语言网页分类的微调策略研究
6
作者 杨甲栋 容晓峰 《西安工业大学学报》 2025年第3期452-467,共16页
为了解决XLM-RoBERTa在多语言网页分类任务中,受低质量数据影响导致微调效果不佳的问题,提出了一种高效的参数微调框架alterAda,以增强模型的数据适应能力。该框架结合了序列适配器与并行适配器,以提升XLM-RoBERTa预训练模型在多语言网... 为了解决XLM-RoBERTa在多语言网页分类任务中,受低质量数据影响导致微调效果不佳的问题,提出了一种高效的参数微调框架alterAda,以增强模型的数据适应能力。该框架结合了序列适配器与并行适配器,以提升XLM-RoBERTa预训练模型在多语言网页分类任务中的性能。实验结果表明,在自制数据集Type2的评估中,相较于加热Softmax函数的全参数微调策略,alterAda的F 1分数提升了2.2%;与MoE适配器方法相比,F1分数提升了1.2%。验证了alterAda框架在数据质量较差的任务中,能够显著提高模型的性能和资源利用效率。 展开更多
关键词 多语言网页分类 XLM-RoBERTa 模型微调 适配器
在线阅读 下载PDF
零样本多语言神经机器翻译综述
7
作者 肖增 王斯日古楞 斯琴图 《计算机科学与探索》 北大核心 2025年第10期2635-2647,共13页
在多语言神经机器翻译中,零样本翻译是一个重要的研究方向,旨在使模型能够翻译训练过程中从未见过的语言对,实现跨语言迁移学习。然而,现有多语言模型在处理未见过语言对时,仍面临诸如语义偏移、翻译质量不稳定、语言方向不对称等问题,... 在多语言神经机器翻译中,零样本翻译是一个重要的研究方向,旨在使模型能够翻译训练过程中从未见过的语言对,实现跨语言迁移学习。然而,现有多语言模型在处理未见过语言对时,仍面临诸如语义偏移、翻译质量不稳定、语言方向不对称等问题,严重影响了翻译效果的可靠性与一致性。为系统性梳理该领域的研究现状,围绕“多语言模型构建方式对零样本翻译性能的影响”这一核心问题展开综述,旨在为后续研究者提供理论支持和方法借鉴。零样本翻译对于训练语料匮乏的语言对翻译任务意义重大,很大程度上降低了翻译成本。从语料资源的角度出发,介绍了零样本翻译的研究背景、基本定义、核心原理及其在跨文化沟通、新语言支持等场景中的实际应用价值。针对当前主流的零样本翻译建模方法,从基于预训练模型、双语监督训练和大语言模型构建多语言神经机器翻译的三个方向进行介绍。分析了多语言神经机器翻译中零样本翻译的未来研究趋势,为该领域进一步研究提供参考。 展开更多
关键词 零样本翻译 预训练模型 双语监督训练 大语言模型 多语言神经机器翻译
在线阅读 下载PDF
知识图谱补全研究综述
8
作者 昂格鲁玛 王斯日古楞 斯琴图 《计算机科学与探索》 北大核心 2025年第9期2302-2318,共17页
知识图谱已在众多领域得到广泛应用,显著推进了人工智能相关任务的发展。然而,知识图谱在实际应用中仍面临知识不完备的挑战,这一挑战严重限制了知识图谱在下游任务中的应用效果。知识图谱补全任务能够预测知识图谱中缺失的连接,以解决... 知识图谱已在众多领域得到广泛应用,显著推进了人工智能相关任务的发展。然而,知识图谱在实际应用中仍面临知识不完备的挑战,这一挑战严重限制了知识图谱在下游任务中的应用效果。知识图谱补全任务能够预测知识图谱中缺失的连接,以解决知识不完备的问题。系统梳理了知识图谱及其补全技术的研究背景,明确了其在人工智能与自然语言处理等领域的关键作用。根据信息来源的不同,将现有补全方法划分为基于结构信息、基于文本信息以及融合结构与文本信息等类型,并对各类方法的代表性成果进行了介绍、优缺点比较及适用场景的归纳,揭示了当前技术的发展脉络与演进趋势。关注多语言知识图谱补全的研究进展,探讨了跨语言实体对齐等关键技术,强调了跨语言知识共享与统一建模的重要性。分析了知识图谱补全在知识融合、知识挖掘等方面的挑战,并展望了未来可能的研究趋势。 展开更多
关键词 知识图谱 知识图谱补全 图神经网络 大语言模型 多语言知识图谱补全
在线阅读 下载PDF
mmDefender:基于多模态多语言对抗训练的大语言模型增强方法
9
作者 张道娟 赵宇飞 +3 位作者 张錋 吴天琦 陈凯 戴聿雯 《网络与信息安全学报》 2025年第4期160-172,共13页
多模态多语言文本生成作为自然语言处理的前沿领域,通过融合视觉与文本输入增强跨语言内容生成能力。这种方法突破了传统纯文本模型的限制,将视觉线索纳入文本生成过程,从而实现更丰富且可以上下文感知的语言细微差别理解。首先探讨了... 多模态多语言文本生成作为自然语言处理的前沿领域,通过融合视觉与文本输入增强跨语言内容生成能力。这种方法突破了传统纯文本模型的限制,将视觉线索纳入文本生成过程,从而实现更丰富且可以上下文感知的语言细微差别理解。首先探讨了多模态元素融入多语言文本生成系统时引入的挑战与脆弱性,重点研究对抗攻击与数据投毒如何通过操纵视觉上下文来影响生成翻译的准确性与可靠性。为应对这些威胁,提出一种基于噪声对比学习的新型防御方法。该方法通过训练系统区分真实视觉输入与篡改内容,显著增强了系统的鲁棒性,有效缓解恶意攻击对翻译过程的干扰。该研究不仅揭示了多模态数据在多语言翻译架构中的潜在风险,还为构建安全、可靠的跨模态生成系统提供了切实可行的解决方案,对推动人工智能模型在实际场景中的安全落地具有重要意义。 展开更多
关键词 多模态多语言攻击 多语言对抗训练 大语言模型
在线阅读 下载PDF
基于离散模型的多语言环境下网络谣言传播的动力学分析
10
作者 胡迦南 张宾 +3 位作者 卢甜甜 刘春梅 王美玉 文卜玉 《辽东学院学报(自然科学版)》 2025年第1期64-76,共13页
考虑到谣言在社交网络中传播具有离散性,采用前向欧拉公式离散化的方法,建立了多语言环境下网络谣言传播2I2SR离散模型。首先,证明了模型的正性和有界性;其次,利用下一代矩阵法得到基本传播数R_(0)和平衡点的存在性;再次,通过构造离散... 考虑到谣言在社交网络中传播具有离散性,采用前向欧拉公式离散化的方法,建立了多语言环境下网络谣言传播2I2SR离散模型。首先,证明了模型的正性和有界性;其次,利用下一代矩阵法得到基本传播数R_(0)和平衡点的存在性;再次,通过构造离散的李雅谱诺夫函数的方法、LaSalle’s不变原理和Routh-Hurwitz判据分别分析了无谣言平衡点的全局渐近稳定性和谣言盛行平衡点的局部渐近稳定性;最后,通过数值模拟验证了理论结果的可靠性。数值分析结果显示,短期在线视频教育可以帮助人们甄别谣言。 展开更多
关键词 网络谣言 离散模型 多语言环境 稳定性
在线阅读 下载PDF
具有记忆的生成重放持续学习多语言情感分析模型
11
作者 黄志强 《信息与电脑》 2025年第12期20-23,共4页
随着全球化加速,情感分析任务大多面向多种不同语言数据集,现有语言模型在处理新语种任务时会因灾难性遗忘导致性能下降。针对模型训练过程中出现的灾难性遗忘问题,文章引入了持续学习方法,构建了生成重放模型mBERT-GR,使模型对旧语言... 随着全球化加速,情感分析任务大多面向多种不同语言数据集,现有语言模型在处理新语种任务时会因灾难性遗忘导致性能下降。针对模型训练过程中出现的灾难性遗忘问题,文章引入了持续学习方法,构建了生成重放模型mBERT-GR,使模型对旧语言任务具有稳定性,且能对因隐私等问题导致不可用的旧任务数据进行预测。实验表明,mBERT-GR模型在法语和英语任务中的性能均有显著提升。 展开更多
关键词 多语言情感分析 持续学习 灾难性遗忘 语言模型
在线阅读 下载PDF
多语言环境下的人工智能大模型适应性研究
12
作者 王文涛 《移动信息》 2025年第7期314-316,共3页
在全球化进程加速的时代,多语言环境成为一种普遍现象。不同地区、不同文化背景下的人们使用各种各样的语言进行交流、信息传递与知识共享。人工智能大模型的出现为处理多语言信息带来了新的机遇与挑战,大模型拥有处理海量数据的能力,... 在全球化进程加速的时代,多语言环境成为一种普遍现象。不同地区、不同文化背景下的人们使用各种各样的语言进行交流、信息传递与知识共享。人工智能大模型的出现为处理多语言信息带来了新的机遇与挑战,大模型拥有处理海量数据的能力,理论上可以同时处理多种语言知识。但每种语言都有其独特的语法、语义、词汇等特性,如何使人工智能大模型在这种复杂的多语言环境下准确地理解、处理和生成信息,成为一个亟待研究的重要课题,关系着人工智能技术在全球范围内的广泛应用和有效服务。 展开更多
关键词 多语言环境 人工智能大模型 适应性
在线阅读 下载PDF
哈萨克语母语者英语学习态度与影响因素研究
13
作者 巴燕·努尔巴合提 《全球教育视角》 2025年第3期48-52,共5页
第三语言习得是当前学界的研究热点,但针对母语为哈萨克语、第二语言为汉语的学生英语学习情况的研究仍较为匮乏。因此,本研究旨在探究母语为哈萨克语(L1)、第二语言为汉语(L2)的英语学习者对英语学习的态度与看法。研究采用质性研究方... 第三语言习得是当前学界的研究热点,但针对母语为哈萨克语、第二语言为汉语的学生英语学习情况的研究仍较为匮乏。因此,本研究旨在探究母语为哈萨克语(L1)、第二语言为汉语(L2)的英语学习者对英语学习的态度与看法。研究采用质性研究方法,通过组织两场焦点小组访谈,收集了12名参与者的相关数据。结果表明,母语与第二语言均对英语学习产生了不同程度的影响。本研究的核心目的是为以哈萨克语为母语,第二语言为汉语的学生的英语教师提供学生对英语学习的认知反馈,助力教师结合学生需求优化教学策略。 展开更多
关键词 第三语习得 跨语言影响 多语动态模型
在线阅读 下载PDF
中老铁路货物运输生产系统多语言策略研究
14
作者 王乔 马志强 +2 位作者 张雅琴 孔庆玮 付冰珂 《铁路计算机应用》 2025年第1期34-38,共5页
为满足中老(中国—老挝)铁路磨(丁)万(象)段现场不同国籍职工生产作业需求,设计中老铁路货物运输生产系统(简称:货运系统)的多语言策略。在对货运系统多语言需求进行分析的基础上,提出货运系统总体架构与技术架构,结合i18n国际化多语言... 为满足中老(中国—老挝)铁路磨(丁)万(象)段现场不同国籍职工生产作业需求,设计中老铁路货物运输生产系统(简称:货运系统)的多语言策略。在对货运系统多语言需求进行分析的基础上,提出货运系统总体架构与技术架构,结合i18n国际化多语言库、动静态结合多语言策略等关键技术,实现中文、英文和老挝文等3种语言的实时切换。该策略显著提升了货运系统的运营维护能力和兼容性,为货运系统的国际化发展提供了重要的技术支持和实践经验。 展开更多
关键词 中老铁路 多语言策略 业务模型 i18n技术 云原生技术 动态映射
在线阅读 下载PDF
跨境电商直播赋能天津中小外贸企业转型升级的研究
15
作者 方朦晨 郑子诺 李盈盈 《中国商论》 2025年第18期42-45,共4页
本文以天津中小外贸企业为研究对象,聚焦跨境电商直播对其转型升级的赋能机制。在全球数字贸易背景下,天津提出打造“北方跨境电商之都”,通过政策驱动、园区与MCN机构协同、专项资金支持等举措推动企业转型。本文构建了“政策赋能—生... 本文以天津中小外贸企业为研究对象,聚焦跨境电商直播对其转型升级的赋能机制。在全球数字贸易背景下,天津提出打造“北方跨境电商之都”,通过政策驱动、园区与MCN机构协同、专项资金支持等举措推动企业转型。本文构建了“政策赋能—生态赋能—企业赋能”三维分析框架,揭示企业面临的语言障碍、供应链协同、内容运营及合规风险四大挑战,并提出数字化选品、多语种直播、保税仓物流闭环、分层差异化运营等创新对策,以期为传统外贸企业数字化转型提供理论支撑与实践路径。 展开更多
关键词 跨境电商直播 政策赋能 生态赋能 前店后仓模式 多语种数字化选品 中小外贸企业
在线阅读 下载PDF
An Efficient Long Short-Term Memory Model for Digital Cross-Language Summarization
16
作者 Y.C.A.Padmanabha Reddy Shyam Sunder Reddy Kasireddy +2 位作者 Nageswara Rao Sirisala Ramu Kuchipudi Purnachand Kollapudi 《Computers, Materials & Continua》 SCIE EI 2023年第3期6389-6409,共21页
The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages.The digital document needs to be evaluated physically through the Cross-Language Text Su... The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages.The digital document needs to be evaluated physically through the Cross-Language Text Summarization(CLTS)involved in the disparate and generation of the source documents.Cross-language document processing is involved in the generation of documents from disparate language sources toward targeted documents.The digital documents need to be processed with the contextual semantic data with the decoding scheme.This paper presented a multilingual crosslanguage processing of the documents with the abstractive and summarising of the documents.The proposed model is represented as the Hidden Markov Model LSTM Reinforcement Learning(HMMlstmRL).First,the developed model uses the Hidden Markov model for the computation of keywords in the cross-language words for the clustering.In the second stage,bi-directional long-short-term memory networks are used for key word extraction in the cross-language process.Finally,the proposed HMMlstmRL uses the voting concept in reinforcement learning for the identification and extraction of the keywords.The performance of the proposed HMMlstmRL is 2%better than that of the conventional bi-direction LSTM model. 展开更多
关键词 Text summarization reinforcement learning hidden markov model CROSS-LANGUAGE multilingual
在线阅读 下载PDF
CINOSUM:面向多民族低资源语言的抽取式摘要模型 被引量:1
17
作者 翁彧 罗皓予 +3 位作者 超木日力格 刘轩 董俊 刘征 《计算机科学》 CSCD 北大核心 2024年第7期296-302,共7页
针对现有的模型无法处理多民族低资源语言自动摘要生成的问题,基于CINO提出了一种面向多民族低资源语言的抽取式摘要模型CINOSUM。为扩大文本摘要的语言范围,首先构建了多种民族语言的摘要数据集MESUM。为解决以往模型在低资源语言上效... 针对现有的模型无法处理多民族低资源语言自动摘要生成的问题,基于CINO提出了一种面向多民族低资源语言的抽取式摘要模型CINOSUM。为扩大文本摘要的语言范围,首先构建了多种民族语言的摘要数据集MESUM。为解决以往模型在低资源语言上效果不佳的问题,构建了一个框架,采用统一的句子抽取器,以进行不同民族语言的抽取式摘要生成。此外,提出采用多语言数据集的联合训练方法,旨在弥补知识获取上的不足,进而扩展在低资源语言上的应用,显著增强模型的适应性与灵活性。最终,在MESUM数据集上开展了广泛的实验研究,实验结果表明CINOSUM模型在包括藏语和维吾尔语在内的多民族低资源语言环境中表现卓越,并且在ROUGE评价体系下取得了显著的性能提升。 展开更多
关键词 抽取式摘要 多语言预训练模型 低资源语言信息处理 知识迁移
在线阅读 下载PDF
基于多语言模型词汇增强的低资源情感分析 被引量:1
18
作者 刘结 陈梅 刘江越 《智能计算机与应用》 2024年第12期82-89,共8页
针对多语言情感分析任务中低资源语言模型词汇量稀少的问题,本文提出一种多语言模型词汇增强的框架。该框架基于齐普夫定律对低频但信息量丰富的词汇进行选择,以扩充低资源语言中的少见词。并结合加权熵对模型词汇表进行优化,以扩充与... 针对多语言情感分析任务中低资源语言模型词汇量稀少的问题,本文提出一种多语言模型词汇增强的框架。该框架基于齐普夫定律对低频但信息量丰富的词汇进行选择,以扩充低资源语言中的少见词。并结合加权熵对模型词汇表进行优化,以扩充与特定情感任务相关的特异词。然后利用多语言模型预训练和微调进行情感分类。实验结果表明,在印地语和印地语-英语混合语言任务上,提出的框架显著提升了低资源情感分析的性能。本方法不仅改善了低资源语言情感分析的性能,还提高了多语言情感分析的整体适应性。 展开更多
关键词 低资源语言 情感分析 词汇增强 多语言模型
在线阅读 下载PDF
Lacmia:抗混淆的多民族语言生成式摘要模型
19
作者 翁彧 罗皓予 +3 位作者 刘征 超木日力格 刘轩 董俊 《中文信息学报》 CSCD 北大核心 2024年第10期80-94,共15页
该文提出了一种针对中国多民族低资源语言生成式摘要模型Lacmia(Language-Anti-confusioned Chinese Minority Abstractive Summarization Model)。为了克服以往模型只能处理单一语言的限制,Lacmia采用了一种统一的生成式架构来执行不... 该文提出了一种针对中国多民族低资源语言生成式摘要模型Lacmia(Language-Anti-confusioned Chinese Minority Abstractive Summarization Model)。为了克服以往模型只能处理单一语言的限制,Lacmia采用了一种统一的生成式架构来执行不同民族语言的摘要生成任务。此外,为了解决以往模型在多民族低资源语言处理上的性能不足问题,该模型在框架中加入了语言信息嵌入模块。该文通过在损失函数中引入目标语言偏好性正则化项,有效减轻了多语言摘要中出现的语言混淆现象,从而提升摘要生成准确性和流畅度。广泛的实验表明,Lacmia在包括藏语和维吾尔语在内的多民族低资源语言摘要任务中,取得了卓越成绩。除了在ROUGE评价标准上实现了显著性能提升外,Lacmia在该文新提出的CINOScore和NLCR两项指标上均达到了最佳效果,验证了模型的有效性和先进性。 展开更多
关键词 生成式摘要 多语言预训练模型 低资源语言信息处理 多目标学习
在线阅读 下载PDF
跨文化传播视角下多语言用户信息分享行为过程模型构建研究 被引量:6
20
作者 樊舒 吴丹 《情报理论与实践》 CSSCI 北大核心 2024年第5期183-193,共11页
[目的/意义]全球化使得个体与不同文化的接触日益频繁,掌握多种语言的个体能够借助多元文化融合的机遇,利用数字平台为中华优秀文化的交流和传播提供新的路径和方向。[方法/过程]社交媒体时代多语言用户成为中国文化跨文化传播的核心推... [目的/意义]全球化使得个体与不同文化的接触日益频繁,掌握多种语言的个体能够借助多元文化融合的机遇,利用数字平台为中华优秀文化的交流和传播提供新的路径和方向。[方法/过程]社交媒体时代多语言用户成为中国文化跨文化传播的核心推动者。故此,文章以多语言用户,即掌握两种及以上语言的用户作为研究对象探究其如何借助信息分享行为传播中华文化相关内容。通过众包方式收集来自全球355个多语言用户跨文化信息分享数据,采用主题分析法构建了多语言用户信息分享行为过程模型,旨在揭示具体的形成机制和行为规律。[结果/结论]构建了包含动机驱动阶段、信息交互阶段和体验感知阶段的多语言用户信息分享行为过程模型。立足中国文化语境,有助于凸显跨文化研究情境,对于促进新时代跨文化传播具有重要意义。 展开更多
关键词 多语言用户 信息分享行为 跨文化传播 过程模型
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部