Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepanc...The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepancies across countries,including individual and country factors.It may be superficially posited that this lag in development stems from individual or microlevel usage challenges.However,the application of the Technology Acceptance Model highlights the presence of overarching characteristics conducive to extensive adoption.Thus,an additional stratum,the multilevel perspective,needs to be examined.This analytical framework incorporates not only individual attributes but also the sociotechnical framework or mesolevel factors in which they operate.A multilevel econometric model is used.The results of these analyses show that the impact on the adoption of cashless payments extends beyond individual factors(attitude to technology use,perceived usefulness,and perceived ease of use).Our primary contribution,conceptually and empirically,is to broaden the analysis vision.A comprehensive multilevel analysis revealed that broader contextual elements,such as infrastructure and national skills,exert a significant influence on the adoption of cashless transactions.Consequently,the widespread acceptance of cashless payment methods is not only contingent on individual choices but is also a collective phenomenon in which the surrounding environment plays a crucial role as a catalyst for the end users in the cashless economy.展开更多
Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the coppe...Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the copper-cobalt phosphide with a multilevel structure has been designed based on the hard and soft acids and bases theory.The nanocone composed of lamellas presented a sharp tip,which a positive effect on the mass transfer enhanced by a local electric field,and the nanolamellas contain CoP/Cu_(3)P interface provide the highly selective active site for the gluconic acid(GNA)synthesis and hydrogen evolution.The catalyst can drive hydrogen evolution at 5 A·cm^(-2)up to 437 h without active decay,and the electrocatalytic glucose oxidation at anode presents high efficiency due to Cu(I)introduction and the synergetic effect between interfaces.Density functional theory(DFT)calculation shows that water splitting more readily occurs at the CoP,which provides adsorbed H and-OH for hydrogen evolution and glucose oxidation,respectively,and glucose adsorption more readily occurs at the Cu_(3)P,which presents lower conversion energy for high value-added GNA.Efficient hydrogen evolution and glucose conversion indicate its high intrinsic activity and synergetic effect.This work provides a special interface construction strategy for the catalytic conversion of hydrogen and small molecules.展开更多
In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.In...In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.展开更多
In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interl...In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit ...The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucello...[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation ind...Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.展开更多
The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition ...The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available infor...This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information.展开更多
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c...This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.展开更多
For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithm...For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithms have certain problems.For example,certain pulse-shaping algorithms have long dead-times in high-counting-rate environments or are difficult to achieve in digital systems.Gaussian signals are widely used in analog nuclear instruments owing to their symmetry and completeness.A Gaussian signal is usually implemented by using a multilevel S–K filter in series or in parallel.It is difficult to construct a real-time digital Gaussian filter for the complex Gaussian filtering algorithm.Based on the multilevel cascade convolution,a pulse-shaping algorithm for double exponential signals is proposed in this study,which,in addition to double exponential signals,allows more complex output signal models to be used in the new algorithm.The proposed algorithm can be used in high-counting-rate environments and has been implemented in an FPGA with fewer multipliers than those required in other traditional Gaussian pulse-shaping algorithms.The offline processing results indicated that the average peak base width of the output-shaped pulses obtained using the proposed algorithm was reduced compared with that obtained using the traditional Gaussian pulse-shaping algorithm.Experimental results also demonstrated that signal-to-noise ratios and energy resolutions were improved,particularly for pulses with a low energy.The energy resolution was improved by 0.1–0.2%while improving the counting rate.展开更多
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Euskal Herriko Unibertsitatea(UPV/EHU)ECRI Ethics in Finance&Social Value GIU22/003Fundacion Emilio Soldevilla para la Investigacion y el Desarrollo en Economia de la Empresa(FESIDE)BOPV2020.
文摘The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepancies across countries,including individual and country factors.It may be superficially posited that this lag in development stems from individual or microlevel usage challenges.However,the application of the Technology Acceptance Model highlights the presence of overarching characteristics conducive to extensive adoption.Thus,an additional stratum,the multilevel perspective,needs to be examined.This analytical framework incorporates not only individual attributes but also the sociotechnical framework or mesolevel factors in which they operate.A multilevel econometric model is used.The results of these analyses show that the impact on the adoption of cashless payments extends beyond individual factors(attitude to technology use,perceived usefulness,and perceived ease of use).Our primary contribution,conceptually and empirically,is to broaden the analysis vision.A comprehensive multilevel analysis revealed that broader contextual elements,such as infrastructure and national skills,exert a significant influence on the adoption of cashless transactions.Consequently,the widespread acceptance of cashless payment methods is not only contingent on individual choices but is also a collective phenomenon in which the surrounding environment plays a crucial role as a catalyst for the end users in the cashless economy.
基金supported by the National Nature Science Foundation of China(No.22269021)Tianshan Talent Project of Xinjiang Uygur Autonomous Region(No.2023TSYCQNTJ0039)the Open project of Key Laboratory in Xinjiang Uygur Autonomous Region of China(No.2023D04027).
文摘Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the copper-cobalt phosphide with a multilevel structure has been designed based on the hard and soft acids and bases theory.The nanocone composed of lamellas presented a sharp tip,which a positive effect on the mass transfer enhanced by a local electric field,and the nanolamellas contain CoP/Cu_(3)P interface provide the highly selective active site for the gluconic acid(GNA)synthesis and hydrogen evolution.The catalyst can drive hydrogen evolution at 5 A·cm^(-2)up to 437 h without active decay,and the electrocatalytic glucose oxidation at anode presents high efficiency due to Cu(I)introduction and the synergetic effect between interfaces.Density functional theory(DFT)calculation shows that water splitting more readily occurs at the CoP,which provides adsorbed H and-OH for hydrogen evolution and glucose oxidation,respectively,and glucose adsorption more readily occurs at the Cu_(3)P,which presents lower conversion energy for high value-added GNA.Efficient hydrogen evolution and glucose conversion indicate its high intrinsic activity and synergetic effect.This work provides a special interface construction strategy for the catalytic conversion of hydrogen and small molecules.
基金supported by the European Union and the Romanian Government through the Competitiveness Operational Programme 2014–2020, under the project“Increasing the economic competitiveness of the forestry sector and the quality of life through knowledge transfer,technology and CDI skills”(CRESFORLIFE),ID P 40 380/105506, subsidiary contract no. 17/2020partially by the FORCLIMSOC Nucleu Programme (Contract 12N/2023)+2 种基金project PN 23090101CresPerfInst project (Contract 34PFE/December 30, 2021)“Increasing the institutional capacity and performance of INCDS ‘Marin Drǎcea’in RDI activities-CresPer”LM was financially supported by the Research Council of Finland's flagship ecosystem for Forest-Human-Machine Interplay–Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE)(decision number 357909)
文摘In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.
基金supported by the National Natural Science Foundation of China(Grant No.22275082 and 22175084).
文摘In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金Supported by Special Research Fund for Public Sector(Agriculture)(200903055)~~
文摘[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
基金National Basic Research Program of China (2012CB722201)National Natural Science Foundation of China (30970504, 31060320)National Science and Technology Support Program (2011BAC07B01)
文摘Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.
文摘The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
文摘This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.42077231 and 51574156).
文摘This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Science and Technology Project in Sichuan Province(No.2021JDRC0028).
文摘For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithms have certain problems.For example,certain pulse-shaping algorithms have long dead-times in high-counting-rate environments or are difficult to achieve in digital systems.Gaussian signals are widely used in analog nuclear instruments owing to their symmetry and completeness.A Gaussian signal is usually implemented by using a multilevel S–K filter in series or in parallel.It is difficult to construct a real-time digital Gaussian filter for the complex Gaussian filtering algorithm.Based on the multilevel cascade convolution,a pulse-shaping algorithm for double exponential signals is proposed in this study,which,in addition to double exponential signals,allows more complex output signal models to be used in the new algorithm.The proposed algorithm can be used in high-counting-rate environments and has been implemented in an FPGA with fewer multipliers than those required in other traditional Gaussian pulse-shaping algorithms.The offline processing results indicated that the average peak base width of the output-shaped pulses obtained using the proposed algorithm was reduced compared with that obtained using the traditional Gaussian pulse-shaping algorithm.Experimental results also demonstrated that signal-to-noise ratios and energy resolutions were improved,particularly for pulses with a low energy.The energy resolution was improved by 0.1–0.2%while improving the counting rate.