Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilaye...Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilayer fracturing scenario.The optimal hydraulic fracturing strategy for themultilayer fracturing networkwas determined by introducing a vertical asymmetry factor.This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume(SRV).The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers(with a stress difference of approximately 3∼8 MPa)indicate that interlayer stress interference from multilayers and multiwells fracturing between neighboring developed formations could affect the longitudinal propagation of the reservoirs.In addition,this study investigated well spacing optimization by comparing uniformly spaced wells(100–300 m)with asymmetric spaced wells(200 m upper layer,250 m lower layer).Numerical results indicated that asymmetric spaced well placement yielded the largest stimulated reservoir volume(SRV)of 73,082 m^(3),representing a 65.42%increase compared to 100 m spaced wells.Furthermore,four different hydraulic fracturing sequences(interlayer,up-down,down-up,and center-edge)were compared for multilayer and multiwell networks.The center-edge sequence exhibited the lowest vertical asymmetry factor(0.71)and the least stress shadowing effects compared to the other sequences(0.78 for interlayer,0.75 for up-down,and 0.76 for down-up).This sequence also achieved the largest SRV(486,194m^(3)),representing an 11.87%increase compared to the down-up sequence.Therefore,the center-edge fracturing sequence is recommended formultilayer development in this block.These results offer valuable insights for optimizing well placement and fracturing sequence design in multilayer well networks,ultimately advancing the development of multilayer fracturing technology in the region.展开更多
The effect of ultrathin Fe layer on perpendicular magnetic anisotropy(PMA) in magnetron-sputtered Co/Pt multilayers was investigated by magnetic measurements.Magnetization hysteresis(M-H) loops and microstructures of ...The effect of ultrathin Fe layer on perpendicular magnetic anisotropy(PMA) in magnetron-sputtered Co/Pt multilayers was investigated by magnetic measurements.Magnetization hysteresis(M-H) loops and microstructures of the samples were measured by vibrating sample magnetometer(VSM) and X-ray diffraction(XRD) and highresolution transmission electron microscopy(HRTEM),respectively.It is found that the PMA is strongly dependent on the interface where Fe layer was doped.When Fe layer was doped at Co/Pt interface where Pt was deposited on Co,the PMA decreases monotonically with Fe layer thickness(tFe) increasing.However,when Fe layer was doped at Pt/Co interface where Co was deposited on Pt,the PMA shows a peak at t_(Fe)=0.1 nm.It is considered that the PMA variation is mainly due to the tuning in the electron occupation states of 3 d orbits at Fe-doped Pt/Co interface.Furthermore,the annealing stability of PMA can also be improved when Fe layer was doped at Pt/Co interface.HRTEM results demonstrate that the magnetic anisotropy evolution is mainly caused by anneal-induced interdiffusion.展开更多
Enhancement of post-annealing stability in Co/ Ni multilayers with perpendicular magnetic anisotropy (PMA) was obtained by inserting Au layers into Ni/Co interfaces. After annealing at 350 ℃, the effective mag- net...Enhancement of post-annealing stability in Co/ Ni multilayers with perpendicular magnetic anisotropy (PMA) was obtained by inserting Au layers into Ni/Co interfaces. After annealing at 350 ℃, the effective mag- netic anisotropy density (Kef0 for Ta(3)/Pt(2)/[Co(0.3)/ Ni(0.6)/Au(0.3)]× 3/Co(0.3)/Pt(1)/Ta(3) (in nm) keeps at 0.48 × 105 J·m^-3. Scanning transmission electron micro- scopy-high-angle annular dark field (STEM-HAADF) analysis shows that the diffusion between Ni and Co layers is obstructed by the Au insertion layers among them, which is responsible for the post-annealing stability enhancement of the multilayers. Multilayers with Pt insertion layers were also investigated as reference samples in this work. Com- pared with Pt-layer-inserted Co/Ni multilayers, the Au insertion layers are found to bring seldom interfacial PMA to the multilayers, making it competitive in being employed to enhance the post-annealing stability of PMA Co/Ni multilayers which are used for magnetic random access memory devices (MRAM).展开更多
Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were stro...Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were strongly influenced by the annealing temperature. The annealed samples obviously became discontinuous multilayers. A maximum magnetoresistance ratio of 5.6% was obtained under a relatively low saturation field of about 400 (10/4π) A/m at the optimum annealing temperature of 450°C. When the annealing temperature was increased, the resistivity decreased, and the coercive force and the saturation field increased. The magnetoresistance ratio also depended on the thickness of Co and Cu layers. The magnetic and transport properties were explained on the basis of the discontinuous multilayered structure.展开更多
In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS)...In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS),is studied using atomic force microscopy.The underwater oil-repellency of PS S-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities.The force curves were analyzed following the Stokes-Reynolds-Young-Laplace theoretical model.Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations(0.1 mM and 1 mM);however,underestimation of the attractive force was found as the NaCl concentration increases to moderate(10 mM)and high(100 mM)levels.Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties(Liu et al.in Angew Chem Int Ed 54(16):4851-4856,2015.https://doi.org/10.1002/anie.201411992).Short-range steric hindrance interactions were further introduced to simulate"brush"effect stemming from nanoscale surface roughness.It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity,which renders it potential application in surface wetting modification and anti-fouling.展开更多
V/Ag multilayers with different periodic thicknesses were fabricated by magnetron sputtering deposition. The columnar structure and the orientation relationship of the multilayers were investigated by transmission ele...V/Ag multilayers with different periodic thicknesses were fabricated by magnetron sputtering deposition. The columnar structure and the orientation relationship of the multilayers were investigated by transmission electron microscopy, high resolution transmission electron microscopy, selected-area electron diffraction and X-ray diffraction. It was found that the multilayered structure became flatter as increasing individual layer thickness from 2 to 6 nm, and then became waved as the individual layer thickness increases to 8 nm. At the beginning of the growth, the morphology of the multilayers with small periodic thickness was influenced mainly by thermodynamic instabilities, and the morphology of the multilayers with larger periodic thickness was mainly influenced mainly by the columnar growth of V. When the waved interfaces were formed, the continuum growth of the multilayers was also influenced by the shadowing effect and the finite atomic size effect. All of these factors resulted in the columnar structure of the multilayers. Multilayers with small periodic thickness presented strong orientation relationship. Nano-hardness tests indicated that multilayers with flat sublayer morphology and clear interfaces exhibited larger hardness.展开更多
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exh...The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.展开更多
Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickne...Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickness on the microstructures and magnetic properties of the films were investigated by low angle X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The experimental results show that a transition from the polycrystalline to amorphous state in the Fe layers occurs with the decrease of Fe layer thickness in the Fe/Gd multilayers. The saturation magnetization of the multilayers reduces significantly with decreasing Fe layer thickness and increasing Gd layer thickness. A superparamagnetic behavior at room temperature is observed for the [Fe(0.6 nm)/Gd(4.0 nm)]15 multilayer due to the formation of discontinuous Fe layers.展开更多
Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for t...Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for three times. Nickel electrodeposited at multi waveformcurrent including direct current, single and double pulse from sulfamate bath can improve the bendfatigue strength of leads. Such nickel plating has a multilayer structure, its morphology ofsublayers can be clearly seen in its cross section with SEM. The electrochemical study shows thatthese sublayers have different corrosion potentials. The bend fatigue test of leads with suchplating for T8 metal package shows that the number of bend increases with the decrease of averagecurrent density of multi waveform, which can be attributed to the reduction of every sublayerthickness and the increase of layer numbers under the same condition of total thickness.展开更多
We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass ...We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.展开更多
The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roug...The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.展开更多
GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1....GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.展开更多
Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The r...Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.展开更多
In this work, we have investigated the mechanical properties of Cu/Ta, Ag/Cu and Ag/Nb multilayers with different heterogeneous interfaces. The results suggest that when individual layer thickness (h) is larger than...In this work, we have investigated the mechanical properties of Cu/Ta, Ag/Cu and Ag/Nb multilayers with different heterogeneous interfaces. The results suggest that when individual layer thickness (h) is larger than 5-10 nm, the hardness/strength of three different multilayer systems has the similar length scale effect with decreasing layer thickness, while when h ≤ 5 nm, the three multilayer systems show remarkably different plastic deformation behaviors. The strength curves exhibit the variation trends of unchanging, softening and increasing corresponding to Cu/Ta, Ag/Cu and Ag/Nb multilayers, respectively. The microstructure analysis shows that three kinds of multilayers have totally different interfacial structures, which lead to the different strengthening or softening mechanisms.展开更多
The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 ...The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.展开更多
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up...The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.展开更多
Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/Si...Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/SiO2 front and back facet coatings as cavity mirror facets of the LDs have been deposited with electron-beam evaporation method. The reflectivity of the designed front coating is about 50% and that of the back high reflective coating is as high as 99.9%. Under pulsed current injection at room temperature, the influences of the dielectric facets were discussed. The threshold current of the ridge GaN-based LDs was decreased after the deposition of the back high reflective dielectric mirrors and decreased again after the front facets were deposited. Above the threshold, the slope efficiency of the LDs with both reflective facets was larger than those with only back facets and without any reflective facets. It is important to design the reflectivity of the front facets for improving the performance of GaN-based LDs.展开更多
Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction ...Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change展开更多
La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron micr...La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.展开更多
基金supported by the National Natural Science Foundation of China(51704324,52374027)Shandong Natural Science Foundation of China(ZR2022ME025,ZR2023ME158).
文摘Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilayer fracturing scenario.The optimal hydraulic fracturing strategy for themultilayer fracturing networkwas determined by introducing a vertical asymmetry factor.This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume(SRV).The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers(with a stress difference of approximately 3∼8 MPa)indicate that interlayer stress interference from multilayers and multiwells fracturing between neighboring developed formations could affect the longitudinal propagation of the reservoirs.In addition,this study investigated well spacing optimization by comparing uniformly spaced wells(100–300 m)with asymmetric spaced wells(200 m upper layer,250 m lower layer).Numerical results indicated that asymmetric spaced well placement yielded the largest stimulated reservoir volume(SRV)of 73,082 m^(3),representing a 65.42%increase compared to 100 m spaced wells.Furthermore,four different hydraulic fracturing sequences(interlayer,up-down,down-up,and center-edge)were compared for multilayer and multiwell networks.The center-edge sequence exhibited the lowest vertical asymmetry factor(0.71)and the least stress shadowing effects compared to the other sequences(0.78 for interlayer,0.75 for up-down,and 0.76 for down-up).This sequence also achieved the largest SRV(486,194m^(3)),representing an 11.87%increase compared to the down-up sequence.Therefore,the center-edge fracturing sequence is recommended formultilayer development in this block.These results offer valuable insights for optimizing well placement and fracturing sequence design in multilayer well networks,ultimately advancing the development of multilayer fracturing technology in the region.
基金financially supported by the National Natural Science Foundation of China (Nos.51371027 and 51331002)the National Key Scientific Research Projects of China (No.2015CB921502)the Ph.D.Programs Foundation of Ministry of Education (No.20120006130002)。
文摘The effect of ultrathin Fe layer on perpendicular magnetic anisotropy(PMA) in magnetron-sputtered Co/Pt multilayers was investigated by magnetic measurements.Magnetization hysteresis(M-H) loops and microstructures of the samples were measured by vibrating sample magnetometer(VSM) and X-ray diffraction(XRD) and highresolution transmission electron microscopy(HRTEM),respectively.It is found that the PMA is strongly dependent on the interface where Fe layer was doped.When Fe layer was doped at Co/Pt interface where Pt was deposited on Co,the PMA decreases monotonically with Fe layer thickness(tFe) increasing.However,when Fe layer was doped at Pt/Co interface where Co was deposited on Pt,the PMA shows a peak at t_(Fe)=0.1 nm.It is considered that the PMA variation is mainly due to the tuning in the electron occupation states of 3 d orbits at Fe-doped Pt/Co interface.Furthermore,the annealing stability of PMA can also be improved when Fe layer was doped at Pt/Co interface.HRTEM results demonstrate that the magnetic anisotropy evolution is mainly caused by anneal-induced interdiffusion.
基金financially supported by the National Natural Science Foundation of China(Nos.51101012, 51271211,51331002,51371025,51371027,51471028 and 51571017)the National Key Scientific Research Projects of China(No. 2015CB921502)+1 种基金the Beijing Nova Program(No.Z141103001814039)the Fundamental Research Funds for the Central Universities(No. FRF-TP-14-002C1)
文摘Enhancement of post-annealing stability in Co/ Ni multilayers with perpendicular magnetic anisotropy (PMA) was obtained by inserting Au layers into Ni/Co interfaces. After annealing at 350 ℃, the effective mag- netic anisotropy density (Kef0 for Ta(3)/Pt(2)/[Co(0.3)/ Ni(0.6)/Au(0.3)]× 3/Co(0.3)/Pt(1)/Ta(3) (in nm) keeps at 0.48 × 105 J·m^-3. Scanning transmission electron micro- scopy-high-angle annular dark field (STEM-HAADF) analysis shows that the diffusion between Ni and Co layers is obstructed by the Au insertion layers among them, which is responsible for the post-annealing stability enhancement of the multilayers. Multilayers with Pt insertion layers were also investigated as reference samples in this work. Com- pared with Pt-layer-inserted Co/Ni multilayers, the Au insertion layers are found to bring seldom interfacial PMA to the multilayers, making it competitive in being employed to enhance the post-annealing stability of PMA Co/Ni multilayers which are used for magnetic random access memory devices (MRAM).
文摘Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were strongly influenced by the annealing temperature. The annealed samples obviously became discontinuous multilayers. A maximum magnetoresistance ratio of 5.6% was obtained under a relatively low saturation field of about 400 (10/4π) A/m at the optimum annealing temperature of 450°C. When the annealing temperature was increased, the resistivity decreased, and the coercive force and the saturation field increased. The magnetoresistance ratio also depended on the thickness of Co and Cu layers. The magnetic and transport properties were explained on the basis of the discontinuous multilayered structure.
基金the National Natural Science Foundation of China(51774303,51422406,51534007)the National Science and Technology Specific Project(2016ZX05028-004001)111 Project(B18054)for providing support for this research。
文摘In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS),is studied using atomic force microscopy.The underwater oil-repellency of PS S-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities.The force curves were analyzed following the Stokes-Reynolds-Young-Laplace theoretical model.Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations(0.1 mM and 1 mM);however,underestimation of the attractive force was found as the NaCl concentration increases to moderate(10 mM)and high(100 mM)levels.Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties(Liu et al.in Angew Chem Int Ed 54(16):4851-4856,2015.https://doi.org/10.1002/anie.201411992).Short-range steric hindrance interactions were further introduced to simulate"brush"effect stemming from nanoscale surface roughness.It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity,which renders it potential application in surface wetting modification and anti-fouling.
基金the National Natural Science Foundation of China(Nos.91026014 and 11175133)the Foundations from Chinese Ministry of Education(Nos.2011014113004 and NCET-13-0438)the Hubei Provincial Natural Science Foundation(No.2012FFA042) for financial support
文摘V/Ag multilayers with different periodic thicknesses were fabricated by magnetron sputtering deposition. The columnar structure and the orientation relationship of the multilayers were investigated by transmission electron microscopy, high resolution transmission electron microscopy, selected-area electron diffraction and X-ray diffraction. It was found that the multilayered structure became flatter as increasing individual layer thickness from 2 to 6 nm, and then became waved as the individual layer thickness increases to 8 nm. At the beginning of the growth, the morphology of the multilayers with small periodic thickness was influenced mainly by thermodynamic instabilities, and the morphology of the multilayers with larger periodic thickness was mainly influenced mainly by the columnar growth of V. When the waved interfaces were formed, the continuum growth of the multilayers was also influenced by the shadowing effect and the finite atomic size effect. All of these factors resulted in the columnar structure of the multilayers. Multilayers with small periodic thickness presented strong orientation relationship. Nano-hardness tests indicated that multilayers with flat sublayer morphology and clear interfaces exhibited larger hardness.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
文摘The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.
基金the National Natural Science Foundation of China (No. 50871060)
文摘Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickness on the microstructures and magnetic properties of the films were investigated by low angle X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The experimental results show that a transition from the polycrystalline to amorphous state in the Fe layers occurs with the decrease of Fe layer thickness in the Fe/Gd multilayers. The saturation magnetization of the multilayers reduces significantly with decreasing Fe layer thickness and increasing Gd layer thickness. A superparamagnetic behavior at room temperature is observed for the [Fe(0.6 nm)/Gd(4.0 nm)]15 multilayer due to the formation of discontinuous Fe layers.
文摘Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for three times. Nickel electrodeposited at multi waveformcurrent including direct current, single and double pulse from sulfamate bath can improve the bendfatigue strength of leads. Such nickel plating has a multilayer structure, its morphology ofsublayers can be clearly seen in its cross section with SEM. The electrochemical study shows thatthese sublayers have different corrosion potentials. The bend fatigue test of leads with suchplating for T8 metal package shows that the number of bend increases with the decrease of averagecurrent density of multi waveform, which can be attributed to the reduction of every sublayerthickness and the increase of layer numbers under the same condition of total thickness.
文摘We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.
文摘The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.
基金Ministry of Education, Science, Sports and Culture under Grantin-Aid for Scielltific Research on Priority Areas (A), Japan!(No.
文摘GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.
基金supported by the National Natural Science Foundation of China(Grant Nos.5132100351322104and 51201123)+5 种基金the National Basic Research Program of China(Grant No.2010CB631003)the 111 Project of China(Grant No.B06025)the support from the Fundamental Research Funds for the Central Universitiesthe Tengfei Scholar projectthe Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2015JM5158)the Shaanxi Province Postdoctoral Scientific Research Project for partial financial support
文摘Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.
基金financially supported by the PAPD(No.50831004)the Fundamental Research Funds for the Central Universities+3 种基金the Innovation Fund of Jiangsu Province(No.BY2013072-06)the Natural Science Foundation of Jiangsu Province(No.20141234)the National Natural Science Foundation of China(Nos.51171078 and 51371096)the State Key Program for Basic Research of China(No.2010CB631004)
文摘In this work, we have investigated the mechanical properties of Cu/Ta, Ag/Cu and Ag/Nb multilayers with different heterogeneous interfaces. The results suggest that when individual layer thickness (h) is larger than 5-10 nm, the hardness/strength of three different multilayer systems has the similar length scale effect with decreasing layer thickness, while when h ≤ 5 nm, the three multilayer systems show remarkably different plastic deformation behaviors. The strength curves exhibit the variation trends of unchanging, softening and increasing corresponding to Cu/Ta, Ag/Cu and Ag/Nb multilayers, respectively. The microstructure analysis shows that three kinds of multilayers have totally different interfacial structures, which lead to the different strengthening or softening mechanisms.
基金Supported by the National Basic Research Program of China under Grant No 2011CB921804the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023
文摘The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572118 and 11372103)the Hunan Provincial Science Fund for Distinguished Young Scholars,China(Grant No.2015JJ1006)the National Key Research and Development Program of China(Grant No.2016YFB0700300)
文摘The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.
基金supported by the National High Technology Program of China (Grant No 2007AA03Z403)the National Natural Science Foundation of China (Grant Nos 60776042 and 60477011)National Basic Research Program of China (Grand No2006CB921607)
文摘Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/SiO2 front and back facet coatings as cavity mirror facets of the LDs have been deposited with electron-beam evaporation method. The reflectivity of the designed front coating is about 50% and that of the back high reflective coating is as high as 99.9%. Under pulsed current injection at room temperature, the influences of the dielectric facets were discussed. The threshold current of the ridge GaN-based LDs was decreased after the deposition of the back high reflective dielectric mirrors and decreased again after the front facets were deposited. Above the threshold, the slope efficiency of the LDs with both reflective facets was larger than those with only back facets and without any reflective facets. It is important to design the reflectivity of the front facets for improving the performance of GaN-based LDs.
文摘Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change
基金NAMCC under Grant86&715-014-0070 and NSFC under Grant 59601002 and59831020.
文摘La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.