期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Thermally drawn multifunctional fibers: Toward the next generation of information technology 被引量:5
1
作者 Yanan Shen Zhe Wang +7 位作者 hixun Wang Jiajia Wang Xiao Yang Xinghua Zheng Haisheng Chen Kaiwei Li Lei Wei Ting Zhang 《InfoMat》 SCIE CAS 2022年第7期98-119,共22页
As the fundamental building block of optical fiber communication technology,thermally drawn optical fibers have fueled the development and prosperity of modern information society.However,the conventional step-index c... As the fundamental building block of optical fiber communication technology,thermally drawn optical fibers have fueled the development and prosperity of modern information society.However,the conventional step-index configured silica optical fibers have scarcely altered since their invention.In recent years,thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology.By adopting the well-developed preform-to-fiber manufacturing technique,a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions.Functions such as photodetection,imaging,acoustoelectric detection,chemical sensing,tactile sensing,biological probing,energy harvesting and storage,data storage,program operation,and information processing on fiber devices.In addition to the original light-guiding function,these flexible fibers can be woven into fab-rics to achieve large-scale personal health monitoring and interpersonal com-munication.Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology.This review article summarizes an overview of the basic concepts,fabrication processes,and developments of multifunctional fibers.It also highlights the significant pro-gress and future development in information applications. 展开更多
关键词 acoustoelectric fiber biological probe energy fiber integrated circuit fiber multifunctional fiber optoelectronic fiber
原文传递
PVDF/6H-SiC composite fiber films with enhanced piezoelectric performance by interfacial engineering for diversified applications
2
作者 Linlin Zhou Tao Yang +7 位作者 Chunyu Guo Kang Wang Enhui Wang Laipan Zhu Hailong Wang Sheng Cao Kuo-Chih Chou Xinmei Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期238-245,共8页
Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric... Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric response of piezoelectric semiconductors remain the major obstacles to their diversified applications.Here,flexible multifunctional PVDF/6H-SiC composite fiber films are fabricated and utilized to assemble both piezoelectric nanogenerators(PENGs)and stress/temperature/light sensors.The open cir-cuit voltage(V_(oc))and the density of short circuit current(I_(sc))of the PENG based on the PVDF/5 wt%6H-SiC composite fiber films reach 28.94 V and 0.24μA cm^(-2),showing a significant improvement of 240%and 300%compared with that based on the pure PVDF films.The effect of 6H-SiC nanoparticles(NPs)on inducing interfacial polarization and stress concentration in composite fiber films is proved by first-principles calculation and finite element analysis.The stress/temperature/light sensors based on the composite fiber film also show high sensitivity to the corresponding stimuli.This study shows that the PVDF/6H-SiC composite fiber film is a promising candidate for assembling high-performance energy harvesters and diverse sensors. 展开更多
关键词 6H-SIC PVDF multifunctional composite fiber film Energy harvester Stress/temperature/light sensor
原文传递
Multifunctional Semiconducting Fibers for Visual Detection of Sarin Gas 被引量:2
3
作者 Maomao Yao Ruilong Zhou +8 位作者 Mingshuai Yuan Haoyu Wang Le Wang Hengda Sun Yanyan Fu Ru Xiao Hongzhi Wang Gang Wang Meifang Zhu 《Advanced Fiber Materials》 SCIE EI CAS 2023年第5期1632-1642,共11页
There is a growing need for protective instruments that can be used in extreme environments,including those encountered during exoplanet exploration,anti-terrorism activities,and in chemical plants.These instruments s... There is a growing need for protective instruments that can be used in extreme environments,including those encountered during exoplanet exploration,anti-terrorism activities,and in chemical plants.These instruments should have the ability to detect external threats visually and monitor internal physiological signals in real time for maximum safety.To address this need,multifunctional semiconducting fibers with visual detection ranging from yellow to red and near-field communication(NFC)capabilities have been developed for use in personal protective clothing.A composite conductive yarn with semiconducting fluorescent probe molecules is embroidered on the clothing,forming an NFC coil that allows for the visual monitoring of atmospheric safety through color changes.The fluorescence detection system was able to selectively detect diethyl chlorophosphate(DCP),a substitute for the toxic gas sarin,with a detection limit of 6.08 ppb,which is lower than the life-threatening concentration of sarin gas.Furthermore,an intelligent protective suit with the abovementioned dual functions was fabricated with good mechanical cycle stability and repeatability.Real-time physiological signals such as the temperature and humidity of the wearer could be read through the NFC conveniently.Such intelligent protective suits can quickly provide an early warning to the identified low-dose DCP and evaluate the health of wearer according to the changes in physiological signals.This study offers a smart,low-cost strategy for designing intelligent protective devices for extreme environments. 展开更多
关键词 multifunctional semiconducting fibers Visual detection Near-field communication(NFC) Fluorescence detection Intelligent protective suits
原文传递
Lab-on-Fiber Technology: a New Avenue for Optical Nanosensors 被引量:8
4
作者 Marco CONSALES Marco PISCO Andrea CUSANO 《Photonic Sensors》 SCIE EI CAS 2012年第4期289-314,共26页
The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-s... The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modem optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead. 展开更多
关键词 Lab-on-fiber all-in-fiber devices optical fiber sensors and devices microstructured fiber Bragg gratings microstructured optical fibers multimaterial and multifunctional fibers
原文传递
Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications 被引量:11
5
作者 Mengxiao Chen Zhe Wang +2 位作者 Kaiwei Li Xiandi Wang Lei Wei 《Advanced Fiber Materials》 CAS 2021年第1期1-13,共13页
Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity,stretchability and high mechanic strength.Lots of e... Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity,stretchability and high mechanic strength.Lots of efforts have been made to find promising soft materials and improve the processing methods to fabricate the elastomer fibers with controllable fiber geometries and designable functionalities.Significant progress has been made and various interdisciplinary applications have been demonstrated based on their unique mechanical performance.A series of remarkable applications,involving biomedicine,optics,electronics,human machine interfaces etc.,have been successfully achieved.Here,we summarize main processing methods to fabricate soft and stretchable functional fibers using different types of elastic materials,which are either widely used or specifically developed.We also introduce some representative applications of multifunctional elastic fibers to reveal this promising research area.All these reported applications indicate that the fast innovated interdisciplinary area is of great potential and inspire more remarkable ideas in fiber sensing,soft electronics,functional fiber integration and other related research fields. 展开更多
关键词 Elastic fibers Stretchable fibers fiber sensing multifunctional fibers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部