As the fundamental building block of optical fiber communication technology,thermally drawn optical fibers have fueled the development and prosperity of modern information society.However,the conventional step-index c...As the fundamental building block of optical fiber communication technology,thermally drawn optical fibers have fueled the development and prosperity of modern information society.However,the conventional step-index configured silica optical fibers have scarcely altered since their invention.In recent years,thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology.By adopting the well-developed preform-to-fiber manufacturing technique,a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions.Functions such as photodetection,imaging,acoustoelectric detection,chemical sensing,tactile sensing,biological probing,energy harvesting and storage,data storage,program operation,and information processing on fiber devices.In addition to the original light-guiding function,these flexible fibers can be woven into fab-rics to achieve large-scale personal health monitoring and interpersonal com-munication.Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology.This review article summarizes an overview of the basic concepts,fabrication processes,and developments of multifunctional fibers.It also highlights the significant pro-gress and future development in information applications.展开更多
Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric...Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric response of piezoelectric semiconductors remain the major obstacles to their diversified applications.Here,flexible multifunctional PVDF/6H-SiC composite fiber films are fabricated and utilized to assemble both piezoelectric nanogenerators(PENGs)and stress/temperature/light sensors.The open cir-cuit voltage(V_(oc))and the density of short circuit current(I_(sc))of the PENG based on the PVDF/5 wt%6H-SiC composite fiber films reach 28.94 V and 0.24μA cm^(-2),showing a significant improvement of 240%and 300%compared with that based on the pure PVDF films.The effect of 6H-SiC nanoparticles(NPs)on inducing interfacial polarization and stress concentration in composite fiber films is proved by first-principles calculation and finite element analysis.The stress/temperature/light sensors based on the composite fiber film also show high sensitivity to the corresponding stimuli.This study shows that the PVDF/6H-SiC composite fiber film is a promising candidate for assembling high-performance energy harvesters and diverse sensors.展开更多
There is a growing need for protective instruments that can be used in extreme environments,including those encountered during exoplanet exploration,anti-terrorism activities,and in chemical plants.These instruments s...There is a growing need for protective instruments that can be used in extreme environments,including those encountered during exoplanet exploration,anti-terrorism activities,and in chemical plants.These instruments should have the ability to detect external threats visually and monitor internal physiological signals in real time for maximum safety.To address this need,multifunctional semiconducting fibers with visual detection ranging from yellow to red and near-field communication(NFC)capabilities have been developed for use in personal protective clothing.A composite conductive yarn with semiconducting fluorescent probe molecules is embroidered on the clothing,forming an NFC coil that allows for the visual monitoring of atmospheric safety through color changes.The fluorescence detection system was able to selectively detect diethyl chlorophosphate(DCP),a substitute for the toxic gas sarin,with a detection limit of 6.08 ppb,which is lower than the life-threatening concentration of sarin gas.Furthermore,an intelligent protective suit with the abovementioned dual functions was fabricated with good mechanical cycle stability and repeatability.Real-time physiological signals such as the temperature and humidity of the wearer could be read through the NFC conveniently.Such intelligent protective suits can quickly provide an early warning to the identified low-dose DCP and evaluate the health of wearer according to the changes in physiological signals.This study offers a smart,low-cost strategy for designing intelligent protective devices for extreme environments.展开更多
The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-s...The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modem optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.展开更多
Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity,stretchability and high mechanic strength.Lots of e...Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity,stretchability and high mechanic strength.Lots of efforts have been made to find promising soft materials and improve the processing methods to fabricate the elastomer fibers with controllable fiber geometries and designable functionalities.Significant progress has been made and various interdisciplinary applications have been demonstrated based on their unique mechanical performance.A series of remarkable applications,involving biomedicine,optics,electronics,human machine interfaces etc.,have been successfully achieved.Here,we summarize main processing methods to fabricate soft and stretchable functional fibers using different types of elastic materials,which are either widely used or specifically developed.We also introduce some representative applications of multifunctional elastic fibers to reveal this promising research area.All these reported applications indicate that the fast innovated interdisciplinary area is of great potential and inspire more remarkable ideas in fiber sensing,soft electronics,functional fiber integration and other related research fields.展开更多
基金A*STAR under AME IRG,Grant/Award Number:A2083c0062Funding of Innovation Academy for Light-duty Gas Turbine,Chinese Academy of Sciences,Grant/Award Number:CXYJJ21-ZD-02+6 种基金National Natural Science Foundation of China,Grant/Award Numbers:51976215,52172249,62005101Schaeffler Hub for Advanced Research at NTU,under the ASTAR IAF-ICP Programme,Grant/Award Number:ICP1900093Scientific Instrument Developing Project of the Chinese Academy of Sciences,Grant/Award Number:YJKYYQ20200017Singapore Ministry of Education Academic Research Fund Tier 1,Grant/Award Numbers:MOE2019-T1-001-103(RG 73/19),MOE2019-T1-001-111(RG 90/19)Singapore Ministry of Education Academic Research Fund Tier 2,Grant/Award Numbers:MOE-T2EP50120-0002,MOE2019-T2-2-127Singapore National Research Foundation Competitive Research Program,Grant/Award Number:NRF-CRP18-2017-02Nanyang Technological University。
文摘As the fundamental building block of optical fiber communication technology,thermally drawn optical fibers have fueled the development and prosperity of modern information society.However,the conventional step-index configured silica optical fibers have scarcely altered since their invention.In recent years,thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology.By adopting the well-developed preform-to-fiber manufacturing technique,a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions.Functions such as photodetection,imaging,acoustoelectric detection,chemical sensing,tactile sensing,biological probing,energy harvesting and storage,data storage,program operation,and information processing on fiber devices.In addition to the original light-guiding function,these flexible fibers can be woven into fab-rics to achieve large-scale personal health monitoring and interpersonal com-munication.Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology.This review article summarizes an overview of the basic concepts,fabrication processes,and developments of multifunctional fibers.It also highlights the significant pro-gress and future development in information applications.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52025041)the National Natural Science Foundation of China(Nos.51902020,51974021,and 52250091)+2 种基金the Fundamental Research Funds for the Central Universities of NO.FRF-TP-20-02C2This project is supported by the S tate Key Laboratory of Featured Metal Materials and Lifecycle Safety for Composite Structures,Guangxi University(Grant No.2021GXYSOF12)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21-028).
文摘Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric response of piezoelectric semiconductors remain the major obstacles to their diversified applications.Here,flexible multifunctional PVDF/6H-SiC composite fiber films are fabricated and utilized to assemble both piezoelectric nanogenerators(PENGs)and stress/temperature/light sensors.The open cir-cuit voltage(V_(oc))and the density of short circuit current(I_(sc))of the PENG based on the PVDF/5 wt%6H-SiC composite fiber films reach 28.94 V and 0.24μA cm^(-2),showing a significant improvement of 240%and 300%compared with that based on the pure PVDF films.The effect of 6H-SiC nanoparticles(NPs)on inducing interfacial polarization and stress concentration in composite fiber films is proved by first-principles calculation and finite element analysis.The stress/temperature/light sensors based on the composite fiber film also show high sensitivity to the corresponding stimuli.This study shows that the PVDF/6H-SiC composite fiber film is a promising candidate for assembling high-performance energy harvesters and diverse sensors.
基金support from the Fundamental Research Funds for the Central Universities(Nos.2232020A-03,and 2232021G-12)the National Natural Science Foundation of China(Grant No.52003049,and 62022085)+1 种基金the Science and Technology Commission of Shanghai Municipality(Nos.21520710700)We would also like to express our thanks to Jianxin Liu from Shanghai Feiju Microelectronics Co.,Ltd.for his technical assistance,and Prof.Wei Xu for his helpful discussions in theoretical calculation.
文摘There is a growing need for protective instruments that can be used in extreme environments,including those encountered during exoplanet exploration,anti-terrorism activities,and in chemical plants.These instruments should have the ability to detect external threats visually and monitor internal physiological signals in real time for maximum safety.To address this need,multifunctional semiconducting fibers with visual detection ranging from yellow to red and near-field communication(NFC)capabilities have been developed for use in personal protective clothing.A composite conductive yarn with semiconducting fluorescent probe molecules is embroidered on the clothing,forming an NFC coil that allows for the visual monitoring of atmospheric safety through color changes.The fluorescence detection system was able to selectively detect diethyl chlorophosphate(DCP),a substitute for the toxic gas sarin,with a detection limit of 6.08 ppb,which is lower than the life-threatening concentration of sarin gas.Furthermore,an intelligent protective suit with the abovementioned dual functions was fabricated with good mechanical cycle stability and repeatability.Real-time physiological signals such as the temperature and humidity of the wearer could be read through the NFC conveniently.Such intelligent protective suits can quickly provide an early warning to the identified low-dose DCP and evaluate the health of wearer according to the changes in physiological signals.This study offers a smart,low-cost strategy for designing intelligent protective devices for extreme environments.
文摘The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modem optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2019-T2-2-127 and T2EP50120-0005)A*STAR under AME IRG(A2083c0062)+2 种基金the Singapore Ministry of Education Academic Research Fund Tier 1(RG90/19 and RG73/19)the Singapore National Research Foundation Competitive Research Program(NRF-CRP18-2017-02)supported by Nanyang Technological University.
文摘Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity,stretchability and high mechanic strength.Lots of efforts have been made to find promising soft materials and improve the processing methods to fabricate the elastomer fibers with controllable fiber geometries and designable functionalities.Significant progress has been made and various interdisciplinary applications have been demonstrated based on their unique mechanical performance.A series of remarkable applications,involving biomedicine,optics,electronics,human machine interfaces etc.,have been successfully achieved.Here,we summarize main processing methods to fabricate soft and stretchable functional fibers using different types of elastic materials,which are either widely used or specifically developed.We also introduce some representative applications of multifunctional elastic fibers to reveal this promising research area.All these reported applications indicate that the fast innovated interdisciplinary area is of great potential and inspire more remarkable ideas in fiber sensing,soft electronics,functional fiber integration and other related research fields.