There are several natural materials which have evolved functional gradients,ingeniously attaining maximal efficacy from limited components.Herein,we utilized the spatiotemporal distribution of initiator acetylacetone ...There are several natural materials which have evolved functional gradients,ingeniously attaining maximal efficacy from limited components.Herein,we utilized the spatiotemporal distribution of initiator acetylacetone to regulate the multienzyme polymerization and fabricate a chitosan-polymer hydrogel.The temporal priority order of acetylacetone was higher than phenolmodified chitosan by density functional theory calculation.The acetylacetone within the gelatin could gradually diffuse spatially into the chitosan hydrogel to fabricate the composite hydrogel with gradient network structure.The gradient hydrogel possessed a transferring topography from the two-dimensional pattern.A continuously decreased modulus along with acetylacetone diffusion was confirmed by atomic force microscope-based force mapping experiment.The water-retaining ability of various regions was confirmed by low-field nuclear magnetic resonance(NMR)and thermogravimetric analysis(TG)analysis,which led to the spontaneous actuation of gradient hydrogel with maximum 1821°/h curling speed and 227°curling angle.Consequently,the promising gradient hydrogels could be applied as intelligent actuators and flexible robots.展开更多
Multienzyme cascades enable the sequential synthesis of complex chemicals by combining multiple catalytic processes in one pot,offering considerable time and cost savings compared to a series of separate batch reactio...Multienzyme cascades enable the sequential synthesis of complex chemicals by combining multiple catalytic processes in one pot,offering considerable time and cost savings compared to a series of separate batch reactions.However,challenges related to coordination and regulatory interplay among multiple enzymes reduce the catalytic efficiency of such cascades.Herein,we genetically programmed a scaffold framework that selectively and orthogonally recruits enzymes as designed.The system was then used to generate multienzyme complexes of D-allulose 3-epimerase(DAE),ribitol dehydrogenase(RDH),and formate dehydrogenase(FDH)for rare sugar production.This scaffolded multienzymatic assembly achieves a 10.4-fold enhancement in the catalytic performance compared to its unassembled counterparts,obtaining allitol yield of more than 95%.Molecular dynamics simulations revealed that shorter distances between neighboring enzymes in scaffold-mounted complexes facilitated the transfer of reaction intermediates.A dual-module catalytic system incorporating(1)scaffold-bound complexes of DAE,RDH,and FDH and(2)scaffold-bound complexes of alcohol dehydrogenase and NADH oxidase expressed intracellularly in E.coli was used to synthesize D-allulose from D-fructose.This system synthesized 90.6%D-allulose from 300 g L^(−1)D-fructose,with a space-time yield of 13.6 g L^(−1)h^(−1).Our work demonstrates the programmability and versatility of scaffold-based strategies for the advancement of multienzyme cascades.展开更多
基金supported by the National Natural Science Foundation of China(51873156,51773155)the National Key Research and Development Program(2016YFA0100800)。
文摘There are several natural materials which have evolved functional gradients,ingeniously attaining maximal efficacy from limited components.Herein,we utilized the spatiotemporal distribution of initiator acetylacetone to regulate the multienzyme polymerization and fabricate a chitosan-polymer hydrogel.The temporal priority order of acetylacetone was higher than phenolmodified chitosan by density functional theory calculation.The acetylacetone within the gelatin could gradually diffuse spatially into the chitosan hydrogel to fabricate the composite hydrogel with gradient network structure.The gradient hydrogel possessed a transferring topography from the two-dimensional pattern.A continuously decreased modulus along with acetylacetone diffusion was confirmed by atomic force microscope-based force mapping experiment.The water-retaining ability of various regions was confirmed by low-field nuclear magnetic resonance(NMR)and thermogravimetric analysis(TG)analysis,which led to the spontaneous actuation of gradient hydrogel with maximum 1821°/h curling speed and 227°curling angle.Consequently,the promising gradient hydrogels could be applied as intelligent actuators and flexible robots.
文摘Multienzyme cascades enable the sequential synthesis of complex chemicals by combining multiple catalytic processes in one pot,offering considerable time and cost savings compared to a series of separate batch reactions.However,challenges related to coordination and regulatory interplay among multiple enzymes reduce the catalytic efficiency of such cascades.Herein,we genetically programmed a scaffold framework that selectively and orthogonally recruits enzymes as designed.The system was then used to generate multienzyme complexes of D-allulose 3-epimerase(DAE),ribitol dehydrogenase(RDH),and formate dehydrogenase(FDH)for rare sugar production.This scaffolded multienzymatic assembly achieves a 10.4-fold enhancement in the catalytic performance compared to its unassembled counterparts,obtaining allitol yield of more than 95%.Molecular dynamics simulations revealed that shorter distances between neighboring enzymes in scaffold-mounted complexes facilitated the transfer of reaction intermediates.A dual-module catalytic system incorporating(1)scaffold-bound complexes of DAE,RDH,and FDH and(2)scaffold-bound complexes of alcohol dehydrogenase and NADH oxidase expressed intracellularly in E.coli was used to synthesize D-allulose from D-fructose.This system synthesized 90.6%D-allulose from 300 g L^(−1)D-fructose,with a space-time yield of 13.6 g L^(−1)h^(−1).Our work demonstrates the programmability and versatility of scaffold-based strategies for the advancement of multienzyme cascades.