We demonstrate a case study of Ce-doped yttrium aluminum garnet(YAG)phosphor to illustrate a novel plasma route for the synthesis of multicomponent materials with addressing morphology and structural control.The prese...We demonstrate a case study of Ce-doped yttrium aluminum garnet(YAG)phosphor to illustrate a novel plasma route for the synthesis of multicomponent materials with addressing morphology and structural control.The presented strategy was started directly from liquid precursors without any precipitating agents,and an innovative growth mechanism was proposed to explain the formation of monodispersed spherical particles with an adjusted size distribution.Homogeneous elemental distribution close to that of liquid precursors was also achieved due to the thermal nonequilibrium effect in plasma.Benefiting from the structural feature of the obtained product,a low transformation temperature of 1100℃for YAG phase was obtained and final products exhibit the highest photoluminescence intensity with rather low Ce doping of 0.5 wt.%,together with excellent thermal stability of 92%preservation of initial emission at 473 K.This work well illustrates the advance of plasma strategy in formation of multicomponent com-pounds with excellent performances,and its potential for large-scale production due to the transient and in-flight synthesis process.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy...Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.展开更多
基金supported by the National Natu-ral Science Foundation of China(No.52174342)the Beijing Nat-ural Science Foundation(No.2232044)the Beijing Munic-ipal Education Commission Research Plan General Project(No.KM202410005009).
文摘We demonstrate a case study of Ce-doped yttrium aluminum garnet(YAG)phosphor to illustrate a novel plasma route for the synthesis of multicomponent materials with addressing morphology and structural control.The presented strategy was started directly from liquid precursors without any precipitating agents,and an innovative growth mechanism was proposed to explain the formation of monodispersed spherical particles with an adjusted size distribution.Homogeneous elemental distribution close to that of liquid precursors was also achieved due to the thermal nonequilibrium effect in plasma.Benefiting from the structural feature of the obtained product,a low transformation temperature of 1100℃for YAG phase was obtained and final products exhibit the highest photoluminescence intensity with rather low Ce doping of 0.5 wt.%,together with excellent thermal stability of 92%preservation of initial emission at 473 K.This work well illustrates the advance of plasma strategy in formation of multicomponent com-pounds with excellent performances,and its potential for large-scale production due to the transient and in-flight synthesis process.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
文摘Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.