期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Progress in the Binding of Chloride Ions in Cement-based Materials
1
作者 DU Xixian LI Gang +2 位作者 WANG Aiqin CAO Aoli SUN Jianren 《材料导报》 北大核心 2025年第13期100-113,共14页
Chloride ions(Cl^(-))have been shown to impact the long-lasting nature of reinforced concrete.However,Cl^(-)that are already bound inside the concrete will not lead to the deterioration of the concrete’s characterist... Chloride ions(Cl^(-))have been shown to impact the long-lasting nature of reinforced concrete.However,Cl^(-)that are already bound inside the concrete will not lead to the deterioration of the concrete’s characteristics.The composition of the cement-based material,including the type of cement and auxiliary materials,greatly influences the ability of the material to bind Cl^(-),and varied components result in varying binding beha-vior of the Cl^(-).Simultaneously,the Cl^(-)binding process in concrete is influenced by both the internal and exterior surroundings,as well as the curing practices.These factors impact the hydration process of the cement and the internal pore structure of the concrete.Currently,mathematical theories and molecular dynamics simulations have increasingly been employed as the prevalent methods for examining the binding behaviors of Cl^(-)in concrete.These techniques are extensively utilized for predicting the lifespan and conducting microscopic studies of reinforced concrete in Cl^(-)settings.This work proposes recommendations for future research based on a summary of experimental and simulation investigations on Cl^(-)binding.Which will offer theoretical guidance for studying the binding of Cl^(-)in cement-based materials. 展开更多
关键词 cement-based material chloride binding auxiliary material environment curing practice simulation
在线阅读 下载PDF
Mechanisms for reinforcing cement-based materials with carbonated AOD stainless steel slag rich in acicular aragonite
2
作者 Ya-jun Wang Jian-bao Zhang +8 位作者 Shao-hua Liu Jun-guo Li Ya-nan Zeng Yi-tong Wang Xi Zhang Bao Liu Xiao-pei Zhang Li-jie Peng Ya-jing Zhang 《Journal of Iron and Steel Research International》 2025年第9期3096-3113,共18页
A slurry-phase carbonation technique was utilized,employing argon oxygen decarburization slag(AOD slag)as a source of calcium and MgCl_(2) as a regulator for the crystal morphology of acicular aragonite.Subsequently,t... A slurry-phase carbonation technique was utilized,employing argon oxygen decarburization slag(AOD slag)as a source of calcium and MgCl_(2) as a regulator for the crystal morphology of acicular aragonite.Subsequently,the carbonated AOD slag,enriched with acicular aragonite,was employed in fabricating composite cementitious materials,followed by an analysis of their evolution in hydration heat,hydration products,and microscopic morphology.Additionally,it delved into the mechanism through which acicular aragonite enhances the stength of composite cementitious materials.Moreover,advanced simulation software for engineering and sciences(ABAQUS)was utilized to simulate the compressive performance of composite mortar with varying dosages of acicular aragonite.The findings demonstrate that the carbonated AOD slag,containing 83.4%acicular aragonite(with an average aspect ratio of 21.31),exhibited commendable compatibility with cement.Moderate integration of carbonated AOD slag facilitated the formation of calcium sulfoaluminate hydrate(AFt)phases.The acicular aragonite within the cementitious matrix showcased remarkable filling effects.As the dosage of carbonated AOD slag increased,flexural and compressive strengths of cement mortar initially rose before declining.Upon reaching a 6%cement inclusion of carbonated AOD slag,the various constituents of the cementitious material displayed optimal synergy.The numerical simulation results confirmed the experimental findings,demonstrating a favorable increase in compressive strength and flexural strength with the addition of acicular aragonite.The acicular aragonite strengthened the matrix by serving bridging and pull-out functions. 展开更多
关键词 AOD slag CARBONATION Acicular aragonite cement-based material Reinforcing ABAQUS
原文传递
Effect of Mechanically Ground Ferrous Extraction Tailing of Nickel Slag on the Properties of Cement-Based Materials
3
作者 FENG Qiong WEI Chao +3 位作者 QIAO Hongxia SONG Yanning ZHANG Yunsheng ZHENG Jianghua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期810-820,共11页
In order to realize the full resource utilization of ferronickel slag(FNS)in cement-based materials,this paper studied the influences of mechanical grinding activation on the physical and chemical properties and react... In order to realize the full resource utilization of ferronickel slag(FNS)in cement-based materials,this paper studied the influences of mechanical grinding activation on the physical and chemical properties and reactivity of ferrous extraction tailing of nickel slag(FETNS).Four grinding processes of 5,10,20 and 30 min were set up to evaluate the influence of grinding process on the physical and chemical properties of FETNS with the aid of BET,XRD,Rietveld analysis and particle size distribution.The cement-FETNS composite cementitious material was prepared by replacing cement with 0%,10%,15%,20%,25%and 30%FETNS.The influence of FETNS fineness and content on the properties of composite cementitious system were characterized by mechanical properties,reaction products,early hydration process and pore structure characteristics.The results show that the grinding process can effectively improve the pozzolanic activity of FETNS.The compressive strength of FETNS-M_(30)paste is higher than that of FETNS-M_(5) paste in the early and late stages,and the later strength is higher than that of the baseline group when the content of FETNS-M_(30)is 10%-25%.The pozzolanic activity of FETNS-M_(30)powder is significantly improved and higher than that of FETNS-M_(5) powder.Under the same content,the Ca/Si ratio of C-S-H gel in FETNS-M_(30)paste is small,and the degree of silicate polymerization is higher.When the FETNS-M_(30)content is 10%,the proportions of favorable pores d<50 nm(harmless pores and less-harmful pores)of FETNS-M_(5) paste and FETNS-M_(30)paste is 95.3%and 95.4%,respectively,indicating a denser pore structure of the FETNS-M_(30)paste. 展开更多
关键词 cement-based composite materials ferrous extraction tailing of nickel slag ball milling activation pozzolanic activity hydration products
原文传递
Carbonated water erosion characteristics and mechanism of tunnel lining cement-based materials in karst environment
4
作者 ZOU Min LIU Juan-hong LI Kang 《Journal of Central South University》 2025年第8期3015-3034,共20页
The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated t... The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated to assess erosion depth,microstructure,phase migrations,and pore structure in various tunnel lining cement-based materials.Additionally,Ca^(2+)leaching was analyzed,and impact of Ca/Si molar ratio in hydration products on erosion resistance was discussed by thermodynamic calculations.The results indicate that carbonated water erosion caused rough and porous surface on specimens,with reduced portlandite and CaCO_(3) content,increased porosity,and an enlargement of pore size.The thermodynamic calculations indicate that the erosion is spontaneous,driven by physical dissolution and chemical reactions dominated by Gibbs free energy.And the erosion reactions proceed more spontaneously and extensively when Ca/Si molar ratio in hydration products was higher.Therefore,cement-based materials with higher portlandite content exhibit weaker erosion resistance.Model-building concrete,with C-S-H gel and portlandite as primary hydration products,has greater erosion susceptibility than shotcrete with ettringite as main hydration product.Moreover,adding silicon-rich mineral admixtures can enhance the erosion resistance.This research offers theory and tech insights to boost cement-based material resistance against carbonated water erosion in karst tunnel engineering. 展开更多
关键词 tunnel lining cement-based materials carbonated water erosion phase analysis pore structure Ca/Si molar ratio
在线阅读 下载PDF
Experimental Study on Additional Stress Induced by Grouting with Polyurethane-Modified Cementitious Materials under Confined Conditions
5
作者 Qizhi Chen Wensheng Cheng +3 位作者 Baoping Zou Bowen Kong Yansheng Deng Xu Long 《Journal of Polymer Materials》 2025年第2期463-475,共13页
The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely ... The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely applied to address issues such as seepage,leakage,and alignment correction in shield tunnels.This study investigates the additional stress induced by grouting in silty soil layers,using cement-based grouts with different water-to-cement ratios and polyurethane-modified cement-based materials.Results show that additional stress decreases with depth and is more influenced by horizontal distance from the grouting point.In staged grouting,the first injection phase contributes about 50%of the peak additional stress.A lower water-to-cement ratio(e.g.,0.6)increases additional stress but reduces grout flowability,while a higher ratio improves diffusion but increases the risk of grout loss.(≥1.0)The polyurethane-modified cement-based material enhances stress transfer performance,increasing peak additional stress by approximately 10%.These findings provide theoretical guidance for optimizing material selection and grouting design in metro tunnel repair within silty soil layers. 展开更多
关键词 Metro tunnel grouting technology polyurethane-modified cement-based material water-to-cement ratio additional stress silty soil layer
在线阅读 下载PDF
Effects of Surface-activated Coal Gangue Aggregates on Properties of Cement-based Materials 被引量:11
6
作者 YANG Quanbing Lü Miaoxiong LUO Yongbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1118-1121,共4页
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi... Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG. 展开更多
关键词 coal gangue AGGREGATE cement-based material STRENGTH FLOWABILITY
原文传递
Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials 被引量:7
7
作者 王桂明 余剑英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第1期89-91,97,共4页
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr... The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids. 展开更多
关键词 cement-based materials SELF-HEALING IMPERMEABILITY CRYSTALLINE
在线阅读 下载PDF
Effects of the Component and Fiber Gradient Distributions on the Strength of Cement-based Composite Materials 被引量:8
8
作者 杨久俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期61-64,共4页
The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive s... The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved. The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C). To obtain the same strength, therefore, a smaller fiber volume content in FGDM/C is needed than that in FHDM/C. The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation. 展开更多
关键词 component gradient distribution fiber gradient distribution cement-based functional materials
在线阅读 下载PDF
Effects of Specimen Shape and Size on Water Loss and Drying Shrinkage of Cement-based Materials 被引量:5
9
作者 巴明芳 钱春香 WANG Hui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期733-740,共8页
The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w... The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy. 展开更多
关键词 cement-based materials drying shrinkage water loss effective drying thickness
原文传递
Effects of an AMPS-Modified Polyacrylic Acid Superplasticizer on the Performance of Cement-based Materials 被引量:3
10
作者 陈宝璠 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期109-116,共8页
A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o... A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers. 展开更多
关键词 AMPS-modified polyacrylic acid superplasticizer cement-based materials polyacrylic acid superplasticizer PERFORMANCE
原文传递
M-T Scheme for Predicting Effective Diffusion Coefficient of Chloride Ions in Cement-based Materials 被引量:2
11
作者 SUN Guowen ZHANG Jianjian +4 位作者 ZHANG Lijuan CAO Tongning WANG Penshuo ZHANG Ying YAN Na 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期520-527,共8页
To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-p... To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple. 展开更多
关键词 M-T scheme chloride ion effective diffusion coefficient cement-based materials ITZ
原文传递
Hydration mechanism of low quality fly ash in cement-based materials 被引量:11
12
作者 刘数华 孔亚宁 王露 《Journal of Central South University》 SCIE EI CAS 2014年第11期4360-4367,共8页
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product... The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak. 展开更多
关键词 low quality fly ash cement-based materials hydration products pore structure
在线阅读 下载PDF
Long-term Durability of Cement-based Materials with Very Low w/b 被引量:1
13
作者 谢友均 龙广成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期303-308,共6页
To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test we... To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test were adopted under long-term heat treatment condition. Microstructure of these materials is also analyzed by scanning electronic microscopy (SEM) and mercury intrusion porosimeter (MIP) in order to further unveil its mechanism and interrelation between microstructure and its properties. The results indicate that in the area investigated, cement-based material with w/b 0.17, like RPC, possesses low porosity and excellent durability. Moreover, its porosity will further decrease under long-term heat treatment compared with normal heat treatment. Its long-term durability is much superior to that of other cement-based materials with w/b 0.25 or 0.35 as high strength concrete(HSC). 展开更多
关键词 cement-based material DURABILITY dilatability potential air permeability CARBONATION capillary absorption
在线阅读 下载PDF
Real-time in situ visualization of internal relative humidity in fluorescence embedded cement-based materials 被引量:1
14
作者 GU Hai-tao YANG Zheng-hong +1 位作者 FAN Zhen JIANG Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3790-3799,共10页
The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering can... The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary. 展开更多
关键词 biological fluorescence rhodamine dyes cement-based material relative humidity sensor
在线阅读 下载PDF
Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure 被引量:1
15
作者 王中平 LI Haoxin +1 位作者 蒋正武 CHEN Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1374-1378,共5页
The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properti... The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properties such as setting times and strength were tested and the microstructures and pore characteristics of pastes with various bamboos were also studied. The experimental results indicated that bamboo charcoal affects the setting times of cement paste, but the introduction of water reducer relieves this condition. Bamboo charcoal also poses an impact on the hardened paste strength. The prominent strength decrease is found when more and larger size bamboo charcoal is mixed into the cement paste. Bamboo charcoal alters the paste microstructure and increases the porosity and pore volume, but it increases the pores with the diameter of less than 50 μm. The pastes with various bamboo charcoals are given with the good functions such as adjusting humidity and adsorption. 展开更多
关键词 bamboo charcoal cement-based materials setting time compressive strength porestructure
原文传递
Influence of Silica Fume on the Reflectivity and Transmission Efficiency of Cement-Based Materials 被引量:2
16
作者 Xiuzhi Zhang Guodong Zhang +1 位作者 Yu Zhang Zonghui Zhou 《Journal of Applied Mathematics and Physics》 2014年第9期843-847,共5页
As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materi... As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materials, the reflectivity, transmission efficiency and pore structure were analyzed by using the vector network analyzer and mercury injection apparatus. Results show that silica fume can make the mortar more compact and the porosity of sample with 9% silica fume is only 17.8%, which is far lower than the control sample;With the increase of the silica fume content, the peak of reflectivity curve increases from -23.2 dB to -16.0 dB, and then decreases from -16.04 dB to -28.7 dB in the frequency range of 6 – 18 GHz. Reflectivity of sample with 3% content of silica fume is lower than other samples within 26.5 - 40 GHz;Transmission efficiency of samples shows the trend of increase with silica fume content increases from 0% to 6% within 8.2 - 12.4 GHz, 12 - 18 GHz and 26.5 - 40 GHz, but when the content increases from 6% to 9%, the transmission efficiency of samples reduces. 展开更多
关键词 SILICA Fume cement-based materials REFLECTIVITY TRANSMISSION EFFICIENCY
暂未订购
Effect of Glutinous Rice Flour on Mechanical Properties and Microstructure of Cement-based Materials 被引量:1
17
作者 FENG Qi LU Bao WANG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期394-400,共7页
The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice ... The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time. 展开更多
关键词 glutinous rice flour cement-based materials mechanical properties setting time
原文传递
Multi-scale Modeling of the Effective Chloride Ion Diffusion Coefficient in Cement-based Composite Materials 被引量:1
18
作者 孙国文 孙伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期364-373,共10页
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the... N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete. 展开更多
关键词 multiscale chloride diffusion coefficient cement-based composite materials generaleffective medium theory composite spheres model MICROSTRUCTURE
原文传递
Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials:A Study on Water Absorption Property 被引量:3
19
作者 王爱国 liu peng +3 位作者 liu kaiwei li yan zhang gaozhan 孙道胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期445-451,共7页
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat... The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively. 展开更多
关键词 air-cooled blast furnace slag aggregate cement-based materials water absorption coefficient interface structure
原文传递
Permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives
20
作者 YUAN Zheng-cheng JIANG Zheng-wu CHEN Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期567-576,共10页
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self... The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model. 展开更多
关键词 cement-based material SELF-HEALING mineral additive calcium carbonate MODEL
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部