Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsiste...Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.展开更多
An iterative separation approach, i.e. source signals are extracted and removed one by one, is proposed for multichannel blind deconvolution of colored signals. Each source signal is extracted in two stages: a filtere...An iterative separation approach, i.e. source signals are extracted and removed one by one, is proposed for multichannel blind deconvolution of colored signals. Each source signal is extracted in two stages: a filtered version of the source signal is first obtained by solving the generalized eigenvalue problem, which is then followed by a single channel blind deconvolution based on ensemble learning. Simulation demonstrates the capability of the approach to perform efficient mutichannel blind deconvolution.展开更多
基金supported by the basic and forward-looking project(No.2023YQX302)。
文摘Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.
基金Supported by the National Natural Science Foundation of China(No.60072048)the Doctoral Program Fund(No.20010561007)
文摘An iterative separation approach, i.e. source signals are extracted and removed one by one, is proposed for multichannel blind deconvolution of colored signals. Each source signal is extracted in two stages: a filtered version of the source signal is first obtained by solving the generalized eigenvalue problem, which is then followed by a single channel blind deconvolution based on ensemble learning. Simulation demonstrates the capability of the approach to perform efficient mutichannel blind deconvolution.