The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as ...Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.展开更多
The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer...The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer with more rods (mrod≥ 2) exhibits rich order-order phase transitions with increasing temperature, where the ordered morphology changes from strips to perforated lamellae and finally to lamellae. In addition, taking the copolymer with mrod = 2 as a representative, we fiarther study the effects of the volume fractions of the rods, the spacer coils and the end coils on the phase behaviors respectively, by which the detailed self-assembled mechanism of the linear rod-coil multiblock copolymers is revealed. Our results are expected to provide guidance for the design of the rod-coil materials.展开更多
In this paper the effects of irradiation on the structures and properties of polysul-fone-polysiloxane multiblock copolymers and its important applied prospects are studied in detail.
A new class of poly(ester-imide-ether) multiblock copolymers was synthesized by transes-terification and melt copolymerization of dimethyl terephthalate (DMT) and N-(4-carbomethoxyphenyl)-4-(carbomethoxy)-phthalimide ...A new class of poly(ester-imide-ether) multiblock copolymers was synthesized by transes-terification and melt copolymerization of dimethyl terephthalate (DMT) and N-(4-carbomethoxyphenyl)-4-(carbomethoxy)-phthalimide with ethylene glycol (EG) and polytetramethylene glycol (PTMG). The structure of the above copolymers was characterized by H-1-NMR and IR spectroscopy. Some properties of the coplymers were also examined. It was found that their mechanical properties and heat stability, compared with poly(ether-ester) copolymers, were obviously improved.展开更多
A series of poly(dimethylsiloxane)(PDMS)-4,4′-diphenylmethanediisocyanate(MDI)-poly(ethylene glycol)(PEG) multiblock copolymers were synthesized by employing two-step growth polymerization and investigated by AFM,XPS...A series of poly(dimethylsiloxane)(PDMS)-4,4′-diphenylmethanediisocyanate(MDI)-poly(ethylene glycol)(PEG) multiblock copolymers were synthesized by employing two-step growth polymerization and investigated by AFM,XPS. contact angle system,protein adsorption and platelets adhesion measurements,respectively.It was found that as the molecular weight of PDMS increased,the surface of copolymers had increasing phase separation,while the increase in the molecular weight of PEG decreased the phase separation extents of the copolymer surface.XPS and contact angle measurements showed that the greater the phase separation extent was,the lower both the surface enrichment of PDMS and the surface free energy of the copolymer film were.The protein adsorption experiments indicated that the best phase separation did not exhibit the best biocompatibility.展开更多
A polymer chain usually contains two or more types of monomeric species from the perspective of polymer chemistry,which poses achallenge to the understanding of structure-property relationships.It is of course true in...A polymer chain usually contains two or more types of monomeric species from the perspective of polymer chemistry,which poses achallenge to the understanding of structure-property relationships.It is of course true in the field of polymer translocation.In the present work,Iinvestigate the translocation dynamics of heterogeneous flexible polymers composed of two types of monomers labeled A and B through ananopore assisted by binding particles(BPs)by using the coarse-grained Langevin dynamics simulations in two-dimensional domains.Specifically,multiblock copolymers with different block lengths and monomeric components are considered.I critically examine how thetranslocation dynamics responds to the variations in the block length and the monomeric content.Interestingly,it is found that the periodicstructure of a multiblock copolymer causes an obvious fingerprint feature in the residence time of individual monomers in which the number ofpeaks is exactly equal to the number of blocks.These findings provide a basic understanding about the sequence-dynamics relationship for theBPs-assisted translocation of heterogeneous flexible polymers.展开更多
Janus polymerization consists of anionic and cationic ring opening polymerizations(AROP and CROP)at the two ends of a single propagating polymer chain,followed by a self-triggered chain extension generating multiblock...Janus polymerization consists of anionic and cationic ring opening polymerizations(AROP and CROP)at the two ends of a single propagating polymer chain,followed by a self-triggered chain extension generating multiblock copolymers(MBCPs)in one step.In the contribution,Janus polymerization by Tm(OTf)_(3) or Er(OTf)_(3) catalyst with an epoxy initiator is applied to synthesize MBCPs of semi-crystalline poly(ε-caprolactone)(PCL)blocks from coordinated AROP and poly(1,3-dioxolane-co-ε-caprolactone)(P(DO-co-CL))blocks from CROP of DO with CL.Meanwhile,amorphous random copolymers[P(DO-r-CL)]are synthesized as control by employing other rare earth triflates[RE(OTf)_(3),RE=Y,Nd,Gd and Lu]as catalysts or in the absence of an initiator via CROP.On account of the distinguishable chemical structures and thermal properties between Janus MBCPs and cationic random copolymers,Janus features are confirmed including the CROP and AROP at a single propagating chain.The resultant amphiphilic copolymers self-assemble to nanoparticles in aqueous solution with designable diameters with the corresponding ratios of hydrophilic and hydrophobic seg-ments.MBCPs exhibit good shape memory properties with appropriate deformation temperature close to human body's,providing a prospect on the applications in biomedical devices.展开更多
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.
基金The authors are Indebted to the National Basic Science Rescarch and Development Grants(973)(No.1999054306).
文摘Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.
基金supported by the National Natural Science Foundation of China (Nos. 20804047, 20774096 and 20734003)Programs and the Fund for Creative Research Groups (No. 50921062)subsidized by the Special Funds for National Basic Research Program of China (Nos. 2009CB930100, 2010CB631100)
文摘The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer with more rods (mrod≥ 2) exhibits rich order-order phase transitions with increasing temperature, where the ordered morphology changes from strips to perforated lamellae and finally to lamellae. In addition, taking the copolymer with mrod = 2 as a representative, we fiarther study the effects of the volume fractions of the rods, the spacer coils and the end coils on the phase behaviors respectively, by which the detailed self-assembled mechanism of the linear rod-coil multiblock copolymers is revealed. Our results are expected to provide guidance for the design of the rod-coil materials.
基金Supported by the National Natural Science Foundation of China Laboratory of Polymer Physics of Academia Sinica of China
文摘In this paper the effects of irradiation on the structures and properties of polysul-fone-polysiloxane multiblock copolymers and its important applied prospects are studied in detail.
基金This work was supported by 863 Programme of China (No. 715-004-0010).
文摘A new class of poly(ester-imide-ether) multiblock copolymers was synthesized by transes-terification and melt copolymerization of dimethyl terephthalate (DMT) and N-(4-carbomethoxyphenyl)-4-(carbomethoxy)-phthalimide with ethylene glycol (EG) and polytetramethylene glycol (PTMG). The structure of the above copolymers was characterized by H-1-NMR and IR spectroscopy. Some properties of the coplymers were also examined. It was found that their mechanical properties and heat stability, compared with poly(ether-ester) copolymers, were obviously improved.
基金supported by the Shanghai Special Nano Foundation and Shanghai Sci.& Tech.Foundation.
文摘A series of poly(dimethylsiloxane)(PDMS)-4,4′-diphenylmethanediisocyanate(MDI)-poly(ethylene glycol)(PEG) multiblock copolymers were synthesized by employing two-step growth polymerization and investigated by AFM,XPS. contact angle system,protein adsorption and platelets adhesion measurements,respectively.It was found that as the molecular weight of PDMS increased,the surface of copolymers had increasing phase separation,while the increase in the molecular weight of PEG decreased the phase separation extents of the copolymer surface.XPS and contact angle measurements showed that the greater the phase separation extent was,the lower both the surface enrichment of PDMS and the surface free energy of the copolymer film were.The protein adsorption experiments indicated that the best phase separation did not exhibit the best biocompatibility.
基金This work was finanailly supported by the China Postdoctoral Science Foundation(No.2015M581998).
文摘A polymer chain usually contains two or more types of monomeric species from the perspective of polymer chemistry,which poses achallenge to the understanding of structure-property relationships.It is of course true in the field of polymer translocation.In the present work,Iinvestigate the translocation dynamics of heterogeneous flexible polymers composed of two types of monomers labeled A and B through ananopore assisted by binding particles(BPs)by using the coarse-grained Langevin dynamics simulations in two-dimensional domains.Specifically,multiblock copolymers with different block lengths and monomeric components are considered.I critically examine how thetranslocation dynamics responds to the variations in the block length and the monomeric content.Interestingly,it is found that the periodicstructure of a multiblock copolymer causes an obvious fingerprint feature in the residence time of individual monomers in which the number ofpeaks is exactly equal to the number of blocks.These findings provide a basic understanding about the sequence-dynamics relationship for theBPs-assisted translocation of heterogeneous flexible polymers.
基金supported by the National Natural Science Foundationof China(No.21871232)。
文摘Janus polymerization consists of anionic and cationic ring opening polymerizations(AROP and CROP)at the two ends of a single propagating polymer chain,followed by a self-triggered chain extension generating multiblock copolymers(MBCPs)in one step.In the contribution,Janus polymerization by Tm(OTf)_(3) or Er(OTf)_(3) catalyst with an epoxy initiator is applied to synthesize MBCPs of semi-crystalline poly(ε-caprolactone)(PCL)blocks from coordinated AROP and poly(1,3-dioxolane-co-ε-caprolactone)(P(DO-co-CL))blocks from CROP of DO with CL.Meanwhile,amorphous random copolymers[P(DO-r-CL)]are synthesized as control by employing other rare earth triflates[RE(OTf)_(3),RE=Y,Nd,Gd and Lu]as catalysts or in the absence of an initiator via CROP.On account of the distinguishable chemical structures and thermal properties between Janus MBCPs and cationic random copolymers,Janus features are confirmed including the CROP and AROP at a single propagating chain.The resultant amphiphilic copolymers self-assemble to nanoparticles in aqueous solution with designable diameters with the corresponding ratios of hydrophilic and hydrophobic seg-ments.MBCPs exhibit good shape memory properties with appropriate deformation temperature close to human body's,providing a prospect on the applications in biomedical devices.