Decision in reality often have the characteristic of hierarchy because of the hierarchy of an organization's structure. In this paper, we propose a two-level hierarchic Markov decision model that considers the intera...Decision in reality often have the characteristic of hierarchy because of the hierarchy of an organization's structure. In this paper, we propose a two-level hierarchic Markov decision model that considers the interactions of agents in different levels and different time scales of levels. A backward induction algo- rithm is given for the model to solve the optimal policy of finite stage hierarchic decision problem. The proposed model and its algorithm are illustrated with an example about two-level hierar- chical decision problem of infrastructure maintenance. The opti- mal policy of the example is solved and the impacts of interactions between levels on decision making are analyzed.展开更多
Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description...Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description—minimum description length, this paper discusses a case: where there is multi-collinearity in the coefficient matrix, principal component estimation is used to estimate and select the original parameters, so as to reduce its multi-collinearity and improve its credibility. From the viewpoint of minimum description length, this paper discusses the approach of selecting principal components and uses this approach to solve a practical problem.展开更多
基金Supported by the National Natural Science Foundation of China (70971048)
文摘Decision in reality often have the characteristic of hierarchy because of the hierarchy of an organization's structure. In this paper, we propose a two-level hierarchic Markov decision model that considers the interactions of agents in different levels and different time scales of levels. A backward induction algo- rithm is given for the model to solve the optimal policy of finite stage hierarchic decision problem. The proposed model and its algorithm are illustrated with an example about two-level hierar- chical decision problem of infrastructure maintenance. The opti- mal policy of the example is solved and the impacts of interactions between levels on decision making are analyzed.
基金Project(40074001) supported by National Natural Science Foundation of China Project (SD2003 -10) supported by the Open ResearchFund Programof the Key Laboratory of Geomatics and Digital Technilogy ,Shandong Province
文摘Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description—minimum description length, this paper discusses a case: where there is multi-collinearity in the coefficient matrix, principal component estimation is used to estimate and select the original parameters, so as to reduce its multi-collinearity and improve its credibility. From the viewpoint of minimum description length, this paper discusses the approach of selecting principal components and uses this approach to solve a practical problem.