Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection appl...Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection application.However,the presence of larger FA^(+)cation induces to an expansion of the Pb-I octahedral framework,which unfortunately affects both the stability and charge carrier mobility of the corresponding devices.To address this challenge,we develop a novel low-dimensional(HtrzT)PbI_(3) perovskite featuring a conjugated organic cation(1H-1,2,4-Triazole-3-thiol,HtrzT^(+))which matches well with theα-FAPbI_(3) lattices in two-dimensional plane.Benefiting from the matched lattice between(HtrzT)PbI_(3) andα-FAPbI_(3),the anchored lattice enhances the Pb-I bond strength and effectively mitigates the inherent tensile strain of theα-FAPbI_(3) crystal lattice.The X-ray detector based on(HtrzT)PbI_(3)(1.0)/FAPbI_(3) device achieves a remarkable sensitivity up to 1.83×10^(5)μC Gy_(air)^(−1) cm^(−2),along with a low detection limit of 27.6 nGy_(air) s^(−1),attributed to the release of residual stress,and the enhancement in carrier mobility-lifetime product.Furthermore,the detector exhibits outstanding stability under X-ray irradiation with tolerating doses equivalent to nearly 1.17×10^(6) chest imaging doses.展开更多
The integration of the digital economy with the traditional sales industry has prompted the robust growth of e-commerce.Live-streaming e-commerce,as a novel business model,has gained immense popularity.However,is⁃sues...The integration of the digital economy with the traditional sales industry has prompted the robust growth of e-commerce.Live-streaming e-commerce,as a novel business model,has gained immense popularity.However,is⁃sues of regulatory loopholes and inefficacy continue to surface.In live-streaming e-commerce,the head anchor,as host of the live-streaming rooms,wields significant influence in determining the goods to be showcased and marketed.Such influence expands risks such as infringement of intellectual property rights.Yet the uncertainty in law concerning the identity of head anchors results in a lack of accountability.Current norms are inadequate in constraining the group of head anchors.Drawing on the principles of risk control,the alignment between benefit and risk,and the theory of so⁃cial cost control,this paper argues that it is both justifiable and feasible to impose a duty to exercise reasonable care on head anchors.To effectively enshrine this duty in law,it is of great importance to redefine the mechanism of identifying the duty of care of head anchors in live-streaming e-commerce.In particular,the contents of the duty of care under⁃taken by head anchors and the consequences of breaching such a duty of care should be clarified.展开更多
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C...Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.展开更多
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati...Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.展开更多
As a primary slope stabilization technique,anchor support encompasses traditional engineering anchors,green anchors,and ecological restoration methods.This review synthesizes two decades of literature to evaluate thes...As a primary slope stabilization technique,anchor support encompasses traditional engineering anchors,green anchors,and ecological restoration methods.This review synthesizes two decades of literature to evaluate these approaches.Current research disproportionately focuses on engineering anchors,while green anchor systems remain less studied despite their dual advantages:reduced labor/economic costs and environmental benefits.Notably,most green anchor studies originate from low-altitude plains,with minimal attention to high-altitude cold-arid regions such as plateaus.We therefore identify slope reinforcement using green anchors in plateau environments as a critical emerging research frontier.展开更多
With the rapid development of deep resource extraction and underground space construction,the design of anchored support systems for jointed rock masses in complex stress environments faces significant challenges.This...With the rapid development of deep resource extraction and underground space construction,the design of anchored support systems for jointed rock masses in complex stress environments faces significant challenges.This study investigates the influence of prefabricated crack dip angles on the mechanical properties of anchored rock masses in deep soft rock roadways.By constructing similarity models of NPR(Negative Poisson’s Ratio)and PR(Positive Poisson’s Ratio)anchored solids,biaxial compression experiments under varying crack dip angles were conducted.Strain gauges,3D Digital Image Correlation(3D DIC),and acoustic emission monitoring were employed to systematically analyze the strength characteristics,deformation-damage evolution,and energy dissipation mechanisms of the two types of anchor systems.The results show that:(1)The stress-strain curves of anchored solids with prefabricated cracks exhibit a distinct bimodal characteristic.Compared to PR anchors,NPR anchors show 20%and 23%improvements in peak strength and elastic modulus,respectively,with residual strength enhanced by up to 34%.(2)Owing to high pre-tightening force and large deformation capacity,NPR anchors maintain superior integrity under increasing crack dip angles,demonstrating more uniform free-surface displacement and localized shear-tensile composite crack patterns.(3)Acoustic emission analysis reveals that NPR anchors exhibit higher cumulative energy absorption(300%improvement over PR anchors)and lack low-rate energy development phases,indicating enhanced ductility and impact resistance at high crack dip angles.(4)Crack dip angle critically governs failure mechanisms by modulating the connectivity between shear cracks and prefabricated fissures:bimodal effects dominate at low angles,while vertical tensile crack propagation replaces bimodal behavior at high angles.The study proposes prioritizing NPR anchor cables in deep engineering applications and optimizing support parameters based on crack dip angles to mitigate stress concentration and ensure the long-term stability of surrounding rock.展开更多
In this paper is presented a concept solution and acceptance test application procedure of deep pit protection structure,intended for three underground levels of residential building:A,B,C,D,block 10C,Budva,Montenegro...In this paper is presented a concept solution and acceptance test application procedure of deep pit protection structure,intended for three underground levels of residential building:A,B,C,D,block 10C,Budva,Montenegro.The anchored wall used consist of nongravity cantilevered walls with three levels of ground anchors.Nongravity cantilevered walls employ continuous walls constructed in slurry trenches(i.e.,slurry(diaphragm)walls),e.g vertical elements that are drilled to depths below the finished excavation grade.For those nongravity cantilevered walls,support is provided through the shear and bending stiffness of the vertical wall elements and passive resistance from the soil below the finished excavation grade.Anchored wall support relies on these components as well as lateral resistance provided by the ground anchors to resist horizontal pressures(e.g.,earth,water,external loads)acting on the wall.Anchored wall analysed and applied is temporary supporting structure necessary for the excavation and erection of the underground structure part up to ground surface level.Temporary ground anchors lifetime is up to two years.Dynamic loads are not considered.展开更多
Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularl...Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularly prevalent among hospitalized patients,facilitating continuous urinary drainage.展开更多
The effect of vanadium(V)element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V content...The effect of vanadium(V)element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V contents.The results indicated that the trace addition of V element can generate dispersed VC nanoparticles in the anchor steel and then refine microstructure by inhibiting austenite grain growth.The increase in V content leads to the formation of a larger amount of smaller VC nanoparticles and more refined microstructure.Moreover,the increasing V content in anchor steel causes the volume fraction of ferrite to increase and that of pearlite to decrease continuously,and even leads to the formation of bainite.Accompanied by the microstructure change,the V-treated anchor steels exhibit higher strength compared with the anchor steel without V addition.However,the increased hardness difference between ferrite and pearlite results in poor coordination of deformation between them,leading to a decrease in their plasticity.The impact toughness of anchor steel first increases but then significantly decreases with the increase in V content.The improvement in impact toughness of trace V-treated anchor steel benefits from the enhancement in the band structure after hot rolling,which consumes more energy during the vertical crack propagation process.However,when the V content further increases,the hard and brittle bainite in the anchor steel can facilitate crack initiation and propagation,ultimately resulting in a reduced toughness.展开更多
The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials...The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution.展开更多
Regarding the current materials used for suture anchors for rotator cuff repair,there are still limitations in terms of degradability,mechanical properties,and bioactivities in clinical applications.Magnesium alloys h...Regarding the current materials used for suture anchors for rotator cuff repair,there are still limitations in terms of degradability,mechanical properties,and bioactivities in clinical applications.Magnesium alloys have preliminarily been shown to promote tendon-bone healing with good prospects for application as anchor materials.However,the design of anchor structures for the degradation characteristics of magnesium alloy materials has not been considered,which is critical for the practical application of magnesium alloy anchors.The mechanism by which magnesium promotes tendon bone healing remains to be clarified.Here,we proposed a novel split hollowed magnesium alloy suture anchors for the repair of rabbit rotator cuff injury.We found that novel split hollowed magnesium alloy anchors structure effectively solved the problem of failure due to degradation of traditional eyelet structure,providing reliable suture fixation.The open architecture facilitates the metabolic resorption of the degradation products of and promotes the ingrowth of bone tissue.Histological staining showed that magnesium anchors have better ability to promote regeneration at the fibrocartilage interface compared to PLLA anchors.The higher expression of fibrocartilage markers(Aggrecan,COL2A1,and Sox9)at the tendon-bone interface in magnesium anchors,which promotes chondrocyte differentiation at the tendon-bone interface and matrix formation,which is more conducive to achieving regeneration and maturation of fibrocartilage enthesis.Hence,this study provides a basis for further research on the clinical application of degradable magnesium alloy suture anchors.展开更多
This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigat...This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils.展开更多
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce...Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.展开更多
Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level rema...Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level remains a key challenge,compromising device stability and hindering practical applications.Here,we employ a chemical optimization strategy that dynamically induces the precipitation of Ag atoms under applied voltage,creating fixed atomic sites to achieve precise control over ion migration,synergistically enhancing the memory and computing capabilities of the device.Compared to unoptimized samples,the proposed device exhibits an approximately 8-fold improvement in robustness,a 3-fold enhancement in stability,high mechanical endurance,and reliable multilevel data storage capability.We further construct a device array and incorporate an efficient reservoir computing model,achieving handwritten digit recognition with an accuracy of up to 90.81%.In summary,this work proposes a dynamic Ag/Ag^(+)anchoring strategy and demonstrates a memristor-based approach that integrates storage and computation to enable energy-efficient artificial intelligence processing,offering a scalable solution for sustainable intelligence in the big data era.展开更多
Rockburst is a common disaster in deep underground engineering,which seriously impacts project construction safety.Understanding its causes and burst resistance mechanism is of significance for rockburst prevention an...Rockburst is a common disaster in deep underground engineering,which seriously impacts project construction safety.Understanding its causes and burst resistance mechanism is of significance for rockburst prevention and mitigation.We developed a new type of high strength,large elongation,and strong energy-absorbing material,and conducted comparative tests on both basic and anchored rock specimens with such material.We analyzed the rockburst process,energy release and peak stress of the rock,and force and deformation withstood by the energy-absorbing bolts.The experimental results show that the energy reduction rate of the rocks reinforced by energy-absorbing bolts is more than 80%,compared with that of the basic rock.The force exerted on the energy-absorbing bolts increases suddenly when the rockburst occurs,and the strength utilization rates of the energy-absorbing bolts under strain rockburst and impact rockburst conditions are 73.3%and 61.2%,respectively.Rockburst also causes non-uniform shear deformation of the anchor bolt.Based on the rockburst energy criterion,the peak stress of the anchored rock is 2.2 times and 2.5 times the uniaxial compressive strength of the rock,respectively,under strain rockburst and impact rockburst conditions.The energy required for rockburst is 396.0 and 478.4 kJ/m^(3),respectively.The energy-anchoring bolts can effectively reduce the likelihood of rockburst.The results can provide a reference for support design for burst-prone rock in underground engineering.展开更多
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control...The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications.展开更多
Weak structural planes commonly exist in underground engineering.These planes make anchor structures more prone to failure,threatening rock stability,threatening the safety and stability of underground engineering.Opt...Weak structural planes commonly exist in underground engineering.These planes make anchor structures more prone to failure,threatening rock stability,threatening the safety and stability of underground engineering.Optical-Thermal-Acoustic(OTA)monitoring was applied during uniaxial compression tests on cross-layer anchored rock masses.The study revealed the mechanical properties,failure characteristics,and energy evolution of rock masses with different anchoring methods and bedding angles.Key findings:anchoring suppresses transverse deformation and tensile crack propagation,increasing elastic modulus and bearing capacity;anchored rock shows more intense acoustic emission but smaller infrared temperature changes;the structural plane angle controls the direction of crack extension and the evolution of the strain characteristics,and the rock is prone to instantaneous slip failure of the structural surface at 45°–75°,and the lower strength with significant IR change characteristics.Distinct OTA characteristics during rupture validate the method's reliability for rockburst early warning and intensity assessment.Moreover,based on the failure characteristics of cross-layer anchored rock masses,a shear failure criterion for anchored structural planes is established.This criterion enables prediction of rock mass failure modes,analysis of bolt support resistance,reference for support design/construction in underground engineering within complex strata.展开更多
With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in...With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in underground engineering.To study the dynamic damage characteristics of anchored rock and the energy absorption control mechanism of dynamic disasters,a new type of constant resistance and energy absorption(CREA)material with high strength,high elongation and high energy absorption characteristics is developed.A contrast test of rockbursts in anchored rock with different support materials is conducted.The test results show that the surface damage rates and energy release degree of anchored rock with common bolt(CB)and CREA are lower than those of unanchored rock,respectively.The total energy,average energy and maximum energy released by CREA anchored rock are 30.9%,94.3%and 84.4%lower than those of CB anchored rock.Compared with unanchored rock,the rockburst peak stress in the CREA anchored rock is increased by 39.9%,and the rockburst time is delayed by 53.2%.Based on the rockburst energy calculation model,the evolution law of rockburst peak stress and energy release is investigated.The control mechanism of CREA support units on rock dynamic failure is clarified.展开更多
The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study...The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.展开更多
Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction ...Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport,thus realizing highly active and stable photoelectrochemical(PEC)water splitting.In this mini review,following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting,the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting,as well as its effect on charge transfer kinetics,are comprehensively reviewed.Finally,potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.展开更多
基金supports from the National Natural Science Foundation of China(22375220,U2001214,22471302)the Guangdong Basic and Applied Basic Research Foundation(2024B1515020101)Open Project Fund from State Key Laboratory of Optoelectronic Materials and Technologies(OEMT-2024-KF-08).
文摘Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection application.However,the presence of larger FA^(+)cation induces to an expansion of the Pb-I octahedral framework,which unfortunately affects both the stability and charge carrier mobility of the corresponding devices.To address this challenge,we develop a novel low-dimensional(HtrzT)PbI_(3) perovskite featuring a conjugated organic cation(1H-1,2,4-Triazole-3-thiol,HtrzT^(+))which matches well with theα-FAPbI_(3) lattices in two-dimensional plane.Benefiting from the matched lattice between(HtrzT)PbI_(3) andα-FAPbI_(3),the anchored lattice enhances the Pb-I bond strength and effectively mitigates the inherent tensile strain of theα-FAPbI_(3) crystal lattice.The X-ray detector based on(HtrzT)PbI_(3)(1.0)/FAPbI_(3) device achieves a remarkable sensitivity up to 1.83×10^(5)μC Gy_(air)^(−1) cm^(−2),along with a low detection limit of 27.6 nGy_(air) s^(−1),attributed to the release of residual stress,and the enhancement in carrier mobility-lifetime product.Furthermore,the detector exhibits outstanding stability under X-ray irradiation with tolerating doses equivalent to nearly 1.17×10^(6) chest imaging doses.
文摘The integration of the digital economy with the traditional sales industry has prompted the robust growth of e-commerce.Live-streaming e-commerce,as a novel business model,has gained immense popularity.However,is⁃sues of regulatory loopholes and inefficacy continue to surface.In live-streaming e-commerce,the head anchor,as host of the live-streaming rooms,wields significant influence in determining the goods to be showcased and marketed.Such influence expands risks such as infringement of intellectual property rights.Yet the uncertainty in law concerning the identity of head anchors results in a lack of accountability.Current norms are inadequate in constraining the group of head anchors.Drawing on the principles of risk control,the alignment between benefit and risk,and the theory of so⁃cial cost control,this paper argues that it is both justifiable and feasible to impose a duty to exercise reasonable care on head anchors.To effectively enshrine this duty in law,it is of great importance to redefine the mechanism of identifying the duty of care of head anchors in live-streaming e-commerce.In particular,the contents of the duty of care under⁃taken by head anchors and the consequences of breaching such a duty of care should be clarified.
文摘Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.
基金financially supported by the National Natural Science Foundation of China(No.52202228,52402298)funded by the Science Research Project of Hebei Education Department(No.BJK2022011)+3 种基金the Central Funds Guiding the Local Science and Technology Development of Hebei Province(No.236Z4404G)the Beijing Tianjin Hebei Basic Research Cooperation Special Project(No.E2024202273)the Science and Technology Correspondent Project of Tianjin(24YDTPJC00240)supported by the U.S.Department of Energy’s Office of Science,Office of Basic Energy Science,Materials Sciences and Engineering Division。
文摘Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.
基金supported by a grant from the National Natural Science Foundation of China(42461020)the Gansu Province joint research Fund project(24JRRA799 and 24JRRA857)。
文摘As a primary slope stabilization technique,anchor support encompasses traditional engineering anchors,green anchors,and ecological restoration methods.This review synthesizes two decades of literature to evaluate these approaches.Current research disproportionately focuses on engineering anchors,while green anchor systems remain less studied despite their dual advantages:reduced labor/economic costs and environmental benefits.Notably,most green anchor studies originate from low-altitude plains,with minimal attention to high-altitude cold-arid regions such as plateaus.We therefore identify slope reinforcement using green anchors in plateau environments as a critical emerging research frontier.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174096 and 52304110).
文摘With the rapid development of deep resource extraction and underground space construction,the design of anchored support systems for jointed rock masses in complex stress environments faces significant challenges.This study investigates the influence of prefabricated crack dip angles on the mechanical properties of anchored rock masses in deep soft rock roadways.By constructing similarity models of NPR(Negative Poisson’s Ratio)and PR(Positive Poisson’s Ratio)anchored solids,biaxial compression experiments under varying crack dip angles were conducted.Strain gauges,3D Digital Image Correlation(3D DIC),and acoustic emission monitoring were employed to systematically analyze the strength characteristics,deformation-damage evolution,and energy dissipation mechanisms of the two types of anchor systems.The results show that:(1)The stress-strain curves of anchored solids with prefabricated cracks exhibit a distinct bimodal characteristic.Compared to PR anchors,NPR anchors show 20%and 23%improvements in peak strength and elastic modulus,respectively,with residual strength enhanced by up to 34%.(2)Owing to high pre-tightening force and large deformation capacity,NPR anchors maintain superior integrity under increasing crack dip angles,demonstrating more uniform free-surface displacement and localized shear-tensile composite crack patterns.(3)Acoustic emission analysis reveals that NPR anchors exhibit higher cumulative energy absorption(300%improvement over PR anchors)and lack low-rate energy development phases,indicating enhanced ductility and impact resistance at high crack dip angles.(4)Crack dip angle critically governs failure mechanisms by modulating the connectivity between shear cracks and prefabricated fissures:bimodal effects dominate at low angles,while vertical tensile crack propagation replaces bimodal behavior at high angles.The study proposes prioritizing NPR anchor cables in deep engineering applications and optimizing support parameters based on crack dip angles to mitigate stress concentration and ensure the long-term stability of surrounding rock.
文摘In this paper is presented a concept solution and acceptance test application procedure of deep pit protection structure,intended for three underground levels of residential building:A,B,C,D,block 10C,Budva,Montenegro.The anchored wall used consist of nongravity cantilevered walls with three levels of ground anchors.Nongravity cantilevered walls employ continuous walls constructed in slurry trenches(i.e.,slurry(diaphragm)walls),e.g vertical elements that are drilled to depths below the finished excavation grade.For those nongravity cantilevered walls,support is provided through the shear and bending stiffness of the vertical wall elements and passive resistance from the soil below the finished excavation grade.Anchored wall support relies on these components as well as lateral resistance provided by the ground anchors to resist horizontal pressures(e.g.,earth,water,external loads)acting on the wall.Anchored wall analysed and applied is temporary supporting structure necessary for the excavation and erection of the underground structure part up to ground surface level.Temporary ground anchors lifetime is up to two years.Dynamic loads are not considered.
文摘Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularly prevalent among hospitalized patients,facilitating continuous urinary drainage.
基金supported by the National Natural Science Foundation of China(Nos.52101165,52031013 and 52071322).
文摘The effect of vanadium(V)element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V contents.The results indicated that the trace addition of V element can generate dispersed VC nanoparticles in the anchor steel and then refine microstructure by inhibiting austenite grain growth.The increase in V content leads to the formation of a larger amount of smaller VC nanoparticles and more refined microstructure.Moreover,the increasing V content in anchor steel causes the volume fraction of ferrite to increase and that of pearlite to decrease continuously,and even leads to the formation of bainite.Accompanied by the microstructure change,the V-treated anchor steels exhibit higher strength compared with the anchor steel without V addition.However,the increased hardness difference between ferrite and pearlite results in poor coordination of deformation between them,leading to a decrease in their plasticity.The impact toughness of anchor steel first increases but then significantly decreases with the increase in V content.The improvement in impact toughness of trace V-treated anchor steel benefits from the enhancement in the band structure after hot rolling,which consumes more energy during the vertical crack propagation process.However,when the V content further increases,the hard and brittle bainite in the anchor steel can facilitate crack initiation and propagation,ultimately resulting in a reduced toughness.
基金supported by the National Natural Science Foundation of China(grant no.52273044,52373092)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(grant no.sklpme2023-3-4)+1 种基金the Key Research Program of Zhejiang Province(grant no.2023C01101,2023C01210,2022C01049,2022C01205)the Natural Science Foundation of Zhejiang Province(grant no.LY20E030008).
文摘The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution.
基金supported by Capital Health Development Research Special Project(2022-2-5051)DongGuan Innovative Research Team Program.Basic applied research program of Liaoning Province of China(No.2022020347-JH2/1013)。
文摘Regarding the current materials used for suture anchors for rotator cuff repair,there are still limitations in terms of degradability,mechanical properties,and bioactivities in clinical applications.Magnesium alloys have preliminarily been shown to promote tendon-bone healing with good prospects for application as anchor materials.However,the design of anchor structures for the degradation characteristics of magnesium alloy materials has not been considered,which is critical for the practical application of magnesium alloy anchors.The mechanism by which magnesium promotes tendon bone healing remains to be clarified.Here,we proposed a novel split hollowed magnesium alloy suture anchors for the repair of rabbit rotator cuff injury.We found that novel split hollowed magnesium alloy anchors structure effectively solved the problem of failure due to degradation of traditional eyelet structure,providing reliable suture fixation.The open architecture facilitates the metabolic resorption of the degradation products of and promotes the ingrowth of bone tissue.Histological staining showed that magnesium anchors have better ability to promote regeneration at the fibrocartilage interface compared to PLLA anchors.The higher expression of fibrocartilage markers(Aggrecan,COL2A1,and Sox9)at the tendon-bone interface in magnesium anchors,which promotes chondrocyte differentiation at the tendon-bone interface and matrix formation,which is more conducive to achieving regeneration and maturation of fibrocartilage enthesis.Hence,this study provides a basis for further research on the clinical application of degradable magnesium alloy suture anchors.
文摘This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602700 and 2022YFB2502104)the National Natural Science Foundation of China(22375089)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332).
文摘Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.
基金supported by the National Natural Science Foundation of China(NSFC,no.61804063)the Natural Science Foundation of Jilin Province(nos.YDZJ202401307ZYTS and 20220201070GX)。
文摘Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level remains a key challenge,compromising device stability and hindering practical applications.Here,we employ a chemical optimization strategy that dynamically induces the precipitation of Ag atoms under applied voltage,creating fixed atomic sites to achieve precise control over ion migration,synergistically enhancing the memory and computing capabilities of the device.Compared to unoptimized samples,the proposed device exhibits an approximately 8-fold improvement in robustness,a 3-fold enhancement in stability,high mechanical endurance,and reliable multilevel data storage capability.We further construct a device array and incorporate an efficient reservoir computing model,achieving handwritten digit recognition with an accuracy of up to 90.81%.In summary,this work proposes a dynamic Ag/Ag^(+)anchoring strategy and demonstrates a memristor-based approach that integrates storage and computation to enable energy-efficient artificial intelligence processing,offering a scalable solution for sustainable intelligence in the big data era.
基金Projects(51927807,52074164,42477166,42077267,42277174)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M)supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,China。
文摘Rockburst is a common disaster in deep underground engineering,which seriously impacts project construction safety.Understanding its causes and burst resistance mechanism is of significance for rockburst prevention and mitigation.We developed a new type of high strength,large elongation,and strong energy-absorbing material,and conducted comparative tests on both basic and anchored rock specimens with such material.We analyzed the rockburst process,energy release and peak stress of the rock,and force and deformation withstood by the energy-absorbing bolts.The experimental results show that the energy reduction rate of the rocks reinforced by energy-absorbing bolts is more than 80%,compared with that of the basic rock.The force exerted on the energy-absorbing bolts increases suddenly when the rockburst occurs,and the strength utilization rates of the energy-absorbing bolts under strain rockburst and impact rockburst conditions are 73.3%and 61.2%,respectively.Rockburst also causes non-uniform shear deformation of the anchor bolt.Based on the rockburst energy criterion,the peak stress of the anchored rock is 2.2 times and 2.5 times the uniaxial compressive strength of the rock,respectively,under strain rockburst and impact rockburst conditions.The energy required for rockburst is 396.0 and 478.4 kJ/m^(3),respectively.The energy-anchoring bolts can effectively reduce the likelihood of rockburst.The results can provide a reference for support design for burst-prone rock in underground engineering.
基金financial support from the National Natural Science Foundation of China(Grant No.41941018).
文摘The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications.
基金supported by the National Natural Science Foundation of China(No.52174081)the National Key Scientific Instruments and Equipment Development Projects of China(No.52227901)。
文摘Weak structural planes commonly exist in underground engineering.These planes make anchor structures more prone to failure,threatening rock stability,threatening the safety and stability of underground engineering.Optical-Thermal-Acoustic(OTA)monitoring was applied during uniaxial compression tests on cross-layer anchored rock masses.The study revealed the mechanical properties,failure characteristics,and energy evolution of rock masses with different anchoring methods and bedding angles.Key findings:anchoring suppresses transverse deformation and tensile crack propagation,increasing elastic modulus and bearing capacity;anchored rock shows more intense acoustic emission but smaller infrared temperature changes;the structural plane angle controls the direction of crack extension and the evolution of the strain characteristics,and the rock is prone to instantaneous slip failure of the structural surface at 45°–75°,and the lower strength with significant IR change characteristics.Distinct OTA characteristics during rupture validate the method's reliability for rockburst early warning and intensity assessment.Moreover,based on the failure characteristics of cross-layer anchored rock masses,a shear failure criterion for anchored structural planes is established.This criterion enables prediction of rock mass failure modes,analysis of bolt support resistance,reference for support design/construction in underground engineering within complex strata.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42477166 and 42277174)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2024JCCXSB01)the Opening Project of State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology(No.KFJJ24-01M)the Open Foundation of Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources(No.HLCX2024-04)。
文摘With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in underground engineering.To study the dynamic damage characteristics of anchored rock and the energy absorption control mechanism of dynamic disasters,a new type of constant resistance and energy absorption(CREA)material with high strength,high elongation and high energy absorption characteristics is developed.A contrast test of rockbursts in anchored rock with different support materials is conducted.The test results show that the surface damage rates and energy release degree of anchored rock with common bolt(CB)and CREA are lower than those of unanchored rock,respectively.The total energy,average energy and maximum energy released by CREA anchored rock are 30.9%,94.3%and 84.4%lower than those of CB anchored rock.Compared with unanchored rock,the rockburst peak stress in the CREA anchored rock is increased by 39.9%,and the rockburst time is delayed by 53.2%.Based on the rockburst energy calculation model,the evolution law of rockburst peak stress and energy release is investigated.The control mechanism of CREA support units on rock dynamic failure is clarified.
基金Financial supports for this work,provided by the National Natural Science Foundation Project of China(No.52374152)the Guangxi Science and Technology Plan Project of China(No.2022AB31023)the National Basic Research Development Program of China(No.2022YFC2904602)are gratefully acknowledged。
文摘The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.
基金support of the Natural Science Foundation of Shaanxi Province(2023-JC-QN-0415)the Special Project on Functional Materials from Shaanxi Provincial Department of Finance(0801YC2305)+1 种基金the Talent Project from Northwest Institute for Non-ferrous Metal Research(YK2310)the National Natural Science Foundation of China(52225606 and 52304334).
文摘Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport,thus realizing highly active and stable photoelectrochemical(PEC)water splitting.In this mini review,following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting,the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting,as well as its effect on charge transfer kinetics,are comprehensively reviewed.Finally,potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.