期刊文献+
共找到523篇文章
< 1 2 27 >
每页显示 20 50 100
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
1
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems 被引量:3
2
作者 Aastha Dak Rahul Radhakrishnan 《Control Theory and Technology》 EI CSCD 2022年第4期465-474,共10页
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ... This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems. 展开更多
关键词 Maximum correntropy criterion Cubature Kalman filter Non-gaussian noise Cauchy kernel gaussian kernel
原文传递
Theoretical convergence analysis of complex Gaussian kernel LMS algorithm
3
作者 Wei Gao Jianguo Huang +1 位作者 Jing Han Qunfei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期39-50,共12页
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no... With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS)algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE)performance among of complex kernel LMS(KLMS)methods according to the specified kernel bandwidth and the length of dictionary. 展开更多
关键词 nonlinear adaptive filtering complex gaussian kernel convergence analysis non-circular data kernel least mean square(KLMS).
在线阅读 下载PDF
Comparison of Uniform and Kernel Gaussian Weight Matrix in Generalized Spatial Panel Data Model
4
作者 Tuti Purwaningsih Erfiani   《Open Journal of Statistics》 2015年第1期90-95,共6页
Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e... Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations. 展开更多
关键词 Component UNIFORM WEIGHT kernel gaussian WEIGHT GENERALIZED Spatial PANEL Data Model
暂未订购
Gaussian Kernel Based SVR Model for Short-Term Photovoltaic MPP Power Prediction
5
作者 Yasemin Onal 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期141-156,共16页
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env... Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN. 展开更多
关键词 Short term power prediction gaussian kernel support vector regression photovoltaic system
在线阅读 下载PDF
Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
6
作者 王恒骞 耿君先 陈磊 《Journal of Donghua University(English Edition)》 CAS 2023年第1期27-33,共7页
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ... In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. 展开更多
关键词 seasonal and trend decomposition using loess(STL) multi-output gaussian process regression combined kernel function polyester esterification process
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
7
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
利用Gaussian核对多元函数的近似逼近及其误差估计 被引量:3
8
作者 徐艳艳 陈广贵 雷文慧 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期581-587,共7页
V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维... V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维紧区间上函数的近似逼近方法,而且还可以控制近似逼近的截断误差.根据上述思想,采用近似逼近法,利用Gaussian核对二维紧空间上光滑函数进行逼近,并考察由这种近似逼近法所产生的误差情况. 展开更多
关键词 gaussian 近似逼近数 全误差 TAYLOR公式
在线阅读 下载PDF
Gaussian小波SVM及其混沌时间序列预测 被引量:3
9
作者 郑永康 陈维荣 +1 位作者 戴朝华 王维博 《控制工程》 CSCD 北大核心 2009年第4期468-471,共4页
为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小... 为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小波SVM。对混沌时间序列进行相空间重构,将重构相空间中的向量作为SVM的输入参量。用Gaussian小波SVM与常用的径向基SVM及Morlet小波SVM进行对比实验,通过对Chens混沌时间序列和负荷混沌时间序列的预测,结果表明,Gaussian小波SVM的效果比其他两种SVM更好。 展开更多
关键词 混沌时间序列预测 相空间重构 gaussian小波核 负荷预测
在线阅读 下载PDF
复Gaussian小波核函数及多参数同步优化策略 被引量:1
10
作者 蒋刚 肖建 +1 位作者 郑永康 宋昌林 《信息与控制》 CSCD 北大核心 2006年第4期467-473,共7页
对复Gauss-ian小波满足M ercy条件及其在H ilbert空间具有再生性的命题作了证明.用复Gauss-ian小波构建出一种核函数,与主成分分析方法相结合,对非线性非平稳信号进行参数辨识和预测.针对多参数模型优化时间过长,不利于工程应用的问题,... 对复Gauss-ian小波满足M ercy条件及其在H ilbert空间具有再生性的命题作了证明.用复Gauss-ian小波构建出一种核函数,与主成分分析方法相结合,对非线性非平稳信号进行参数辨识和预测.针对多参数模型优化时间过长,不利于工程应用的问题,提出了一种多参数同步优化策略.仿真实验验证了该方法的可行性和有效性,表明该方法具有较好的实用价值. 展开更多
关键词 gaussian小波 主成分分析 核函数方法 非线性非平稳信号 参数辨识
在线阅读 下载PDF
Gaussian核SVM在抗噪语音识别中的应用 被引量:1
11
作者 白静 张雪英 《计算机工程与设计》 CSCD 北大核心 2009年第17期4061-4063,4066,共4页
为提高机器学习的推广能力,解决语音识别系统在噪声环境中识别率变差等问题,采用改进的MFCC语音特征参数,用Gaussian核支持向量机(SVM)作为语音识别网络,对SVM多类分类问题采用"一对一"分类算法,实现了一个汉语孤立词非特定... 为提高机器学习的推广能力,解决语音识别系统在噪声环境中识别率变差等问题,采用改进的MFCC语音特征参数,用Gaussian核支持向量机(SVM)作为语音识别网络,对SVM多类分类问题采用"一对一"分类算法,实现了一个汉语孤立词非特定人中等词汇量的抗噪语音识别系统。通过实验,分析了Gaussian核参数和误差惩罚参数C对SVM推广能力的影响。实验结果表明,当工作在不同信噪比情况下,使用最优参数的Gaussion核SVM的识别率比使用RBF神经网络有较大的提高,训练时间能大为缩减,鲁棒性也较好。 展开更多
关键词 支持向量机 gaussian 多类分类算法 特征提取 语音识别
在线阅读 下载PDF
基于KPCA-GaussianNB的电子商务信用风险分类 被引量:3
12
作者 李兵 何华 《物流技术》 2019年第2期61-67,共7页
用核主成分分析(KPCA)和高斯朴素贝叶斯(GaussianNB)构建电子商务信用风险分类模型(KPCAGaussianNB)。首先,通过KPCA方法将电子商务信用风险涉及的指标进行主要特征提取;其次,应用GaussianNB方法构造电子商务信用风险分类模型;最后,使... 用核主成分分析(KPCA)和高斯朴素贝叶斯(GaussianNB)构建电子商务信用风险分类模型(KPCAGaussianNB)。首先,通过KPCA方法将电子商务信用风险涉及的指标进行主要特征提取;其次,应用GaussianNB方法构造电子商务信用风险分类模型;最后,使用18家电子商务企业的真实数据进行实证检验,并依据检验结果提出应对风险的措施。验证结果表明:通过对比GaussianNB、PCA-GaussianNB和KPCA-GaussianNB的平均准确率,KPCA-GaussianNB的平均准确率最高。 展开更多
关键词 电子商务 信用风险 核主成分分析 高斯朴素贝叶斯
在线阅读 下载PDF
Soft sensor modeling based on Gaussian processes 被引量:2
13
作者 熊志化 黄国宏 邵惠鹤 《Journal of Central South University of Technology》 EI 2005年第4期469-471,共3页
In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance... In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance. It is trained by optimizing the hyperparameters using the scaled conjugate gradient algorithm with the squared exponential covariance function employed. Experimental simulations show that the soft sensor modeling approach has the advantage via a real-world example in a refinery. Meanwhile, the method opens new possibilities for application of kernel methods to potential fields. 展开更多
关键词 gaussian processes soft sensor MODELING kernel methods
在线阅读 下载PDF
A Gaussian process regression-based sea surface temperature interpolation algorithm 被引量:1
14
作者 Yongshun ZHANG Miao FENG +2 位作者 Weimin ZHANG Huizan WANG Pinqiang WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第4期1211-1221,共11页
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provid... The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability. 展开更多
关键词 gaussian process regression sea surface temperature(SST) machine learning kernel function spatial interpolation
在线阅读 下载PDF
A Kernel-Based Nonlinear Representor with Application to Eigenface Classification 被引量:7
15
作者 张晶 刘本永 谭浩 《Journal of Electronic Science and Technology of China》 2004年第2期19-22,共4页
This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple tech... This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier. 展开更多
关键词 kernel based nonlinear representor face recognition EIGENFACES gaussian kernel euclidean distance classifier
在线阅读 下载PDF
Gaussian核与具有共同光滑性的Sobolev类的学习误差
16
作者 张苏 韩永杰 王桐心 《乐山师范学院学报》 2016年第8期1-7,共7页
逼近误差和回归函数的正规性有关。文章研究了Gaussian核和Sobolev共同光滑回归函数的逼近误差,并得到其对数收敛阶。这个结果推广了周定轩有关Sobolev光滑回归函数的逼近误差研究。
关键词 机器学习 逼近误差 共同光滑 gaussian
在线阅读 下载PDF
Determination of influential parameters for prediction of total sediment loads in mountain rivers using kernel-based approaches
17
作者 Kiyoumars ROUSHANGAR Saman SHAHNAZI 《Journal of Mountain Science》 SCIE CSCD 2020年第2期480-491,共12页
It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport i... It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers. 展开更多
关键词 Total sediment loads Support vector machine gaussian process regression kernel extreme learning machine Mountain Rivers
原文传递
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
18
作者 Kai Chen Qinglei Kong +4 位作者 Yijue Dai Yue Xu Feng Yin Lexi Xu Shuguang Cui 《China Communications》 SCIE CSCD 2022年第1期218-237,共20页
Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning techniques,next-generation data-driven communication systems will be intelligent wi... Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning techniques,next-generation data-driven communication systems will be intelligent with unique characteristics of expressiveness, scalability, interpretability, and uncertainty awareness, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review a promising family of nonparametric Bayesian machine learning models,i.e., Gaussian processes(GPs), and their applications in wireless communication. Since GP models demonstrate outstanding expressive and interpretable learning ability with uncertainty, they are particularly suitable for wireless communication. Moreover, they provide a natural framework for collaborating data and empirical models(DEM). Specifically, we first envision three-level motivations of data-driven wireless communication using GP models. Then, we present the background of the GPs in terms of covariance structure and model inference. The expressiveness of the GP model using various interpretable kernels, including stationary, non-stationary, deep and multi-task kernels,is showcased. Furthermore, we review the distributed GP models with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we list representative solutions and promising techniques that adopt GP models in various wireless communication applications. 展开更多
关键词 wireless communication gaussian process machine learning kernel INTERPRETABILITY UNCERTAINTY
在线阅读 下载PDF
Gaussian process hydrodynamics
19
作者 H.OWHADI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1175-1198,共24页
We present a Gaussian process(GP)approach,called Gaussian process hydrodynamics(GPH)for approximating the solution to the Euler and Navier-Stokes(NS)equations.Similar to smoothed particle hydrodynamics(SPH),GPH is a L... We present a Gaussian process(GP)approach,called Gaussian process hydrodynamics(GPH)for approximating the solution to the Euler and Navier-Stokes(NS)equations.Similar to smoothed particle hydrodynamics(SPH),GPH is a Lagrangian particle-based approach that involves the tracking of a finite number of particles transported by a flow.However,these particles do not represent mollified particles of matter but carry discrete/partial information about the continuous flow.Closure is achieved by placing a divergence-free GP priorξon the velocity field and conditioning it on the vorticity at the particle locations.Known physics(e.g.,the Richardson cascade and velocityincrement power laws)is incorporated into the GP prior by using physics-informed additive kernels.This is equivalent to expressingξas a sum of independent GPsξl,which we call modes,acting at different scales(each modeξlself-activates to represent the formation of eddies at the corresponding scales).This approach enables a quantitative analysis of the Richardson cascade through the analysis of the activation of these modes,and enables us to analyze coarse-grain turbulence statistically rather than deterministically.Because GPH is formulated by using the vorticity equations,it does not require solving a pressure equation.By enforcing incompressibility and fluid-structure boundary conditions through the selection of a kernel,GPH requires significantly fewer particles than SPH.Because GPH has a natural probabilistic interpretation,the numerical results come with uncertainty estimates,enabling their incorporation into an uncertainty quantification(UQ)pipeline and adding/removing particles(quanta of information)in an adapted manner.The proposed approach is suitable for analysis because it inherits the complexity of state-of-the-art solvers for dense kernel matrices and results in a natural definition of turbulence as information loss.Numerical experiments support the importance of selecting physics-informed kernels and illustrate the major impact of such kernels on the accuracy and stability.Because the proposed approach uses a Bayesian interpretation,it naturally enables data assimilation and predictions and estimations by mixing simulation data and experimental data. 展开更多
关键词 I Navier-Stokes(NS)equation EULER LAGRANGIAN VORTICITY gaussian pro-cess(GP) physics-informed kernel
在线阅读 下载PDF
基于改进组合核函数高斯过程回归的车速预测 被引量:1
20
作者 赵靖华 闻龙 +4 位作者 汪守丰 刘倩妤 周宇麒 刘妲 解方喜 《吉林大学学报(理学版)》 北大核心 2025年第2期454-464,共11页
基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超... 基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超参数寻优时采用了粒子群实时求解方法.瞬态工况下2 s时长车速预测的仿真分析表明:相比于单核性能较好的径向基(SE)核函数,SEM方法在车速FTP75工况下平均绝对误差(MAE)和均方根误差(RMSE)标准分别降低了10.09%和7.23%,而SEM^(*)方法在两个误差指标上相比SEM方法分别降低8.02%和8.13%;在城市典型工况下,SEM相比SE方法MAE和RMSE分别降低了3.44%和4.16%,而SEM^(*)在两个误差指标上相比SEM核函数分别降低3.57%和2.17%;同时SEM^(*)方法在FTP75工况单次最大计算时间上相对SE核函数降低0.3 s,城市典型工况付出的代价是相对SE核函数提高了0.015 s的最大计算时间,但计算时间仍在0.1 s采样时刻以内,具有实时性. 展开更多
关键词 组合核函数 高斯过程 车速预测
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部