Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects incl...Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on reflection amplitude.展开更多
In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software ...In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.展开更多
The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will incre...The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will increase the burden on interpreters, occupy large computer memory, take much more computing time, conceal the effective information, and especially cause the "curse of dimension". Uncertainty of attributes will reduce the accuracy of rebuilding the relationship between attributes and geological significance. In order to solve these problems, we study methods of principal component analysis (PCA), independent component analysis (ICA) for attribute optimization and support vector machine (SVM) for reservoir prediction. We propose a flow chart of multi-wave seismic attribute process and further apply it to multi-wave seismic reservoir prediction. The processing results of real seismic data demonstrate that reservoir prediction based on combination of PP- and PS-wave attributes, compared with that based on traditional PP-wave attributes, can improve the prediction accuracy.展开更多
Aircrafts damages caused by lightning strikes have been known since the early days of aviation.However,the physical effects on the aircraft structure are still being investigated.This work seeks to evaluate the lightn...Aircrafts damages caused by lightning strikes have been known since the early days of aviation.However,the physical effects on the aircraft structure are still being investigated.This work seeks to evaluate the lightning strike effects in the aluminum alloy 7075-T6.Samples were submitted to lightning strike simulation in laboratory and the damages evaluated through characterization techniques.Ultrasound and profilometry tests have shown material loss to 0.272 mm depth in the damaged region.In addition,it was detected the material accumulation occurrence in the damage vicinity of the region.Below the damage,it was found a region where metallurgical changes were identified.The tensile and microhardness tests results have shown reduction in the percentage elongation and hardness increasing in the material affected by lightning.These results are corroborated by the X-Ray Diffraction(XRD)and Rietveld Method(red line)that indicated an increasing in dislocation density and micro-deformation in the material matrix.Optical microscopy results have shown the presence of microcracks on the normal and cross-section surface of the samples damaged.The Energy Dispersive X-Ray Spectroscopy(EDXS)and Electron Backscattered Diffraction Test(EBSD)found coarse intermetallic phases and precipitates compounds with dimensions greater than 1 lm in length.They were responsible for nucleation of the microcracks that propagate along the material grain boundaries.展开更多
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (...Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.展开更多
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the...We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.展开更多
This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage cau...This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage caused by lightning strikes in particular.Then,a numerical model based on the conservation laws of momentum,mass and energy is developed for soil subjected to lightning strikes.Comparisons to field observations and theoretical calculations are used to demonstrate the efficacy and accuracy of numerical simulations.The findings demonstrate that lightning strikes can cause soils to experience both seepage force and heat stress.Under the calculative condition of this article:by increasing the intrinsic permeability of the soil,k_(p)(≥10^(-10)m^(2)),the seepage force can be effectively reduced,hence reducing the risk of lightning strikes;improving the electrical conductivity of the soil β(≥10^(-1) S/m^(2))and lowering its thermal expansion coefficient(≤10^(-6)K^(-1))can greatly reduce the damage caused by lightning strikes to the soil.The preceding investigations demonstrate that the suggested model is capable of evaluating mechanical damage caused by lightning in the soil,and the findings contribute to a better understanding of soil mechanical response to lightning strikes.展开更多
Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invent...Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invented the lightning rod in 1752,lightning rods have been used worldwide to prevent direct lightning strikes in various fields such as high-voltage power transmission lines,outdoor chemical sites,highways,land and sea wind farms,and forest lightning fire protection.It has been proven that lightning accidents still occur frequently in places where lightning rods are installed and the protective angle method is used.In order to further study the protective effect of lightning rods and identify the shortcomings of lightning rod protection,negative lightning strikes are taken as the research object,to analyze the limitations of lightning rods in preventing direct lightning strikes from the working principle of lightning rods.展开更多
To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves ...To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves focused in both emission and reception processes,which strengthens the focusing energy and improves the signal-to-noise ratio of received signals.A numerical model is developed to study the characteristics of a multi-wave focusing field.It is shown that the element width approaching 0.8 wavelengths of shear waves can keep a balance between the radiation energy of two waves,which can achieve a desirable multi-wave focusing performance.And an experiment using different imaging methods for a linear phased array is performed.It can be concluded that due to the combination of the propagation and reflection characteristics of two waves,the multi-wave focusing and imaging method can significantly improve the imaging distinguishability of defects and expand the available sweeping range to a sector of-650 to 65°.展开更多
In this paper, we propose and analyze an optical multi-wave mixing scheme for the generation of coherent light in a five-level atomic system in the context of electromagnetically induced transparency. A detailed semic...In this paper, we propose and analyze an optical multi-wave mixing scheme for the generation of coherent light in a five-level atomic system in the context of electromagnetically induced transparency. A detailed semiclassical study of the propagation of generated mixing and probe fields is demonstrated. The analytical dependence of the generated mixing field on the probe field and the respective detuning is predicted. Such a nonlinear optical process can be used for generating short-wavelength radiation at low pump intensities.展开更多
The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and supp...The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.展开更多
In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model o...In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.展开更多
This paper is the third part of the complex combat dynamics series, called tensor-centric warfare (for the first two parts, see [1] [2]). In the present paper, we extend the tensor combat model from [1] and [2] to mod...This paper is the third part of the complex combat dynamics series, called tensor-centric warfare (for the first two parts, see [1] [2]). In the present paper, we extend the tensor combat model from [1] and [2] to model the dynamics of delta-strikes/missiles , which are temporally confined strong kinetic effects . The scenarios analyzed here include both deterministic and random delta-strikes which mimic single, multiple and continuous-time missile attacks. We also look at the bidirectional random strike as well as the general Hamilton-Langevin dynamics framework and provide an interpretation of the results obtained through simulation.展开更多
The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions...The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena.展开更多
Presented the concept of the natural support strength.The natural support strength,the strike sill,the multifunction retractors (developed by the author) and etc.were used with the technical measures to change the pas...Presented the concept of the natural support strength.The natural support strength,the strike sill,the multifunction retractors (developed by the author) and etc.were used with the technical measures to change the passive support to the initiative support, and the soft rock entry was supported.And its process is simple and less equipment is needed,and the cost is low and the advance rate is high,which can meet the require- ments of actual mining.It solves many support difficult problems.展开更多
Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of supe...Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.展开更多
In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)b...In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)based on protection angle method.In fact,the basic idea of the two is the same,that is,the source of the lightning fan is replaced by S1-S4 of the former lightning building with the latter ND-NDJ.According to the above method of wind farm evaluation,it has been proved that the practice can not achieve good results.Taking offshore wind farm as an example,this paper introduces a new method of establishing six evaluation indicators to determine the risk level according to the new technology and compliance principle of regional lightning protection(semi-circular method),which can be used for reference by wind farm technicians.展开更多
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur...Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.展开更多
According to structure function and lightning damage of a cable car, a feasible method of lightning strike risk evaluation for a cable car was put forward based on the evaluation model and evaluation method in the sta...According to structure function and lightning damage of a cable car, a feasible method of lightning strike risk evaluation for a cable car was put forward based on the evaluation model and evaluation method in the standard IEC62305-2. According to the difference between common buildings and cable cars, problems of height non-uniformity of equivalent section caused by inclination of the cable car and diversity of lightning activity regularity caused by the large area were resolved, and expected annual average frequency of lightning strike was calculated using three dimensional graphic approach and regional lightning characteristic analysis. Based on different types of damage process and loss consequences, according to interception effect against lightning invasion of the lightning protection measures and the method of probability selection proposed in the standard, the probability of casu- alty caused by direct lightning strike in a cable car and a waiting area as well as probabilities of casualty caused by failure of electronic information systems were cal- culated.展开更多
基金sponsored by the National Natural Science Foundation of China (Grant No. 41074098)the National Basic Research Program of China (973 Program) (Grant No. 2007CB209606)
文摘Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on reflection amplitude.
基金supported by Natural Science Foundation of China (No.11472225)
文摘In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.
基金supported by China Important National Science & Technology Specific Projects (No.2011ZX05019-008)National Natural Science Foundation of China (No.40839901)
文摘The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will increase the burden on interpreters, occupy large computer memory, take much more computing time, conceal the effective information, and especially cause the "curse of dimension". Uncertainty of attributes will reduce the accuracy of rebuilding the relationship between attributes and geological significance. In order to solve these problems, we study methods of principal component analysis (PCA), independent component analysis (ICA) for attribute optimization and support vector machine (SVM) for reservoir prediction. We propose a flow chart of multi-wave seismic attribute process and further apply it to multi-wave seismic reservoir prediction. The processing results of real seismic data demonstrate that reservoir prediction based on combination of PP- and PS-wave attributes, compared with that based on traditional PP-wave attributes, can improve the prediction accuracy.
文摘Aircrafts damages caused by lightning strikes have been known since the early days of aviation.However,the physical effects on the aircraft structure are still being investigated.This work seeks to evaluate the lightning strike effects in the aluminum alloy 7075-T6.Samples were submitted to lightning strike simulation in laboratory and the damages evaluated through characterization techniques.Ultrasound and profilometry tests have shown material loss to 0.272 mm depth in the damaged region.In addition,it was detected the material accumulation occurrence in the damage vicinity of the region.Below the damage,it was found a region where metallurgical changes were identified.The tensile and microhardness tests results have shown reduction in the percentage elongation and hardness increasing in the material affected by lightning.These results are corroborated by the X-Ray Diffraction(XRD)and Rietveld Method(red line)that indicated an increasing in dislocation density and micro-deformation in the material matrix.Optical microscopy results have shown the presence of microcracks on the normal and cross-section surface of the samples damaged.The Energy Dispersive X-Ray Spectroscopy(EDXS)and Electron Backscattered Diffraction Test(EBSD)found coarse intermetallic phases and precipitates compounds with dimensions greater than 1 lm in length.They were responsible for nucleation of the microcracks that propagate along the material grain boundaries.
基金National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKJ202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.
基金supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1
文摘We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.
基金funded by the Natural Science Foundation of China(Grant No.42077435)。
文摘This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage caused by lightning strikes in particular.Then,a numerical model based on the conservation laws of momentum,mass and energy is developed for soil subjected to lightning strikes.Comparisons to field observations and theoretical calculations are used to demonstrate the efficacy and accuracy of numerical simulations.The findings demonstrate that lightning strikes can cause soils to experience both seepage force and heat stress.Under the calculative condition of this article:by increasing the intrinsic permeability of the soil,k_(p)(≥10^(-10)m^(2)),the seepage force can be effectively reduced,hence reducing the risk of lightning strikes;improving the electrical conductivity of the soil β(≥10^(-1) S/m^(2))and lowering its thermal expansion coefficient(≤10^(-6)K^(-1))can greatly reduce the damage caused by lightning strikes to the soil.The preceding investigations demonstrate that the suggested model is capable of evaluating mechanical damage caused by lightning in the soil,and the findings contribute to a better understanding of soil mechanical response to lightning strikes.
基金Supported by Lightning Multi-pulse Intelligent Monitoring System Optimization Technology Project of Guangdong Yuedian Dianbai Hot Water Wind Farm(SFC/DBW-Z-FW-23-006).
文摘Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invented the lightning rod in 1752,lightning rods have been used worldwide to prevent direct lightning strikes in various fields such as high-voltage power transmission lines,outdoor chemical sites,highways,land and sea wind farms,and forest lightning fire protection.It has been proven that lightning accidents still occur frequently in places where lightning rods are installed and the protective angle method is used.In order to further study the protective effect of lightning rods and identify the shortcomings of lightning rod protection,negative lightning strikes are taken as the research object,to analyze the limitations of lightning rods in preventing direct lightning strikes from the working principle of lightning rods.
基金the National Natural Science Foundation of China(Grant No.11774377)。
文摘To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves focused in both emission and reception processes,which strengthens the focusing energy and improves the signal-to-noise ratio of received signals.A numerical model is developed to study the characteristics of a multi-wave focusing field.It is shown that the element width approaching 0.8 wavelengths of shear waves can keep a balance between the radiation energy of two waves,which can achieve a desirable multi-wave focusing performance.And an experiment using different imaging methods for a linear phased array is performed.It can be concluded that due to the combination of the propagation and reflection characteristics of two waves,the multi-wave focusing and imaging method can significantly improve the imaging distinguishability of defects and expand the available sweeping range to a sector of-650 to 65°.
基金The project supported by National Fundamental Research Program of China under Grant No.2001CB309310National Natural Science Foundation of China under Grant Nos.90103026,10125419,and 10121503
文摘In this paper, we propose and analyze an optical multi-wave mixing scheme for the generation of coherent light in a five-level atomic system in the context of electromagnetically induced transparency. A detailed semiclassical study of the propagation of generated mixing and probe fields is demonstrated. The analytical dependence of the generated mixing field on the probe field and the respective detuning is predicted. Such a nonlinear optical process can be used for generating short-wavelength radiation at low pump intensities.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60308002 and 60678005), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No 200339), the Foundation for Key Program of Ministry of Education,China (Grant No 105156), the For Ying-Tong Education Foundation for Young Teachers in the Institutions of Higher Education of China (Grant No 101061) and the Specialized Research Pund for the Doctoral Program of Higher Education of China (Grant No 20050698017).
文摘The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.
基金the Doctor Research Fund for Universities of China (No.20070616004)the National High Technology Research and Development Program of China (No.2007AA060505)
文摘In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.
文摘This paper is the third part of the complex combat dynamics series, called tensor-centric warfare (for the first two parts, see [1] [2]). In the present paper, we extend the tensor combat model from [1] and [2] to model the dynamics of delta-strikes/missiles , which are temporally confined strong kinetic effects . The scenarios analyzed here include both deterministic and random delta-strikes which mimic single, multiple and continuous-time missile attacks. We also look at the bidirectional random strike as well as the general Hamilton-Langevin dynamics framework and provide an interpretation of the results obtained through simulation.
基金supported by the National Science and Technology Major Project(Nos.2017ZX05019001 and 2017ZX05019006)the PetroChina Innovation Foundation(No.2016D-5007-0303)the Science Foundation of China University of Petroleum,Beijing(No.2462016YJRC020)。
文摘The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena.
基金the Educational Department of Liaoning Province(20081220)
文摘Presented the concept of the natural support strength.The natural support strength,the strike sill,the multifunction retractors (developed by the author) and etc.were used with the technical measures to change the passive support to the initiative support, and the soft rock entry was supported.And its process is simple and less equipment is needed,and the cost is low and the advance rate is high,which can meet the require- ments of actual mining.It solves many support difficult problems.
基金the National Natural Science Foundation of China(No.51467002)Special Projects for Innovation-driven Development(No.2018AA03001Y).
文摘Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.
基金Supported by Research on Key Technologies of Lightning Intelligent Protection System for Guangdong Energy Hehe Sea Wind Farm(SFC/QZW-ZX-XF-24-020).
文摘In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)based on protection angle method.In fact,the basic idea of the two is the same,that is,the source of the lightning fan is replaced by S1-S4 of the former lightning building with the latter ND-NDJ.According to the above method of wind farm evaluation,it has been proved that the practice can not achieve good results.Taking offshore wind farm as an example,this paper introduces a new method of establishing six evaluation indicators to determine the risk level according to the new technology and compliance principle of regional lightning protection(semi-circular method),which can be used for reference by wind farm technicians.
文摘Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.
基金Supported by the Scientific Research Project of Hebei Meteorological Bureau in 2014(14ky20)~~
文摘According to structure function and lightning damage of a cable car, a feasible method of lightning strike risk evaluation for a cable car was put forward based on the evaluation model and evaluation method in the standard IEC62305-2. According to the difference between common buildings and cable cars, problems of height non-uniformity of equivalent section caused by inclination of the cable car and diversity of lightning activity regularity caused by the large area were resolved, and expected annual average frequency of lightning strike was calculated using three dimensional graphic approach and regional lightning characteristic analysis. Based on different types of damage process and loss consequences, according to interception effect against lightning invasion of the lightning protection measures and the method of probability selection proposed in the standard, the probability of casu- alty caused by direct lightning strike in a cable car and a waiting area as well as probabilities of casualty caused by failure of electronic information systems were cal- culated.