期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Separation of P. and SV-wavefields from multi-componen seismic data 被引量:1
1
作者 刘道理 胡天跃 王彦宾 《Applied Geophysics》 SCIE CSCD 2006年第3期163-168,共6页
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements... In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data. 展开更多
关键词 multi-component seismic data wavefield separation P-SV wave r-p transform.
在线阅读 下载PDF
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:2
2
作者 Fu-Bin Chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 Monitoring change in horizontal stress multi-wave reflection coefficients Nonlinear elasticity theory Time-lapse seismic data
原文传递
Prediction of Subtle Thin Gas Reservoir in the Loess Desert Area in the North of Ordos Basin 被引量:2
3
作者 YangHua FuJinhua WangDaxing 《Applied Geophysics》 SCIE CSCD 2004年第2期122-128,共7页
For thin gas reservoir of low-porosity and low-permeability in the loess desert area, a suite of lateral reservoir prediction techniques has been developed by Changqing Oil Company and the excellent effects achieved i... For thin gas reservoir of low-porosity and low-permeability in the loess desert area, a suite of lateral reservoir prediction techniques has been developed by Changqing Oil Company and the excellent effects achieved in exploration and exploitation in the areas such as Yulin, Wushenqi,Suligemiao, Shenmu etc., so that the Upper Paleozoic gas reserve has been stably increasing for eight years in Changqing Oilfield. The paper analyzed the effects and experience of the application of these techniques in detail. 展开更多
关键词 DESERT nutralgas reservoir prediction seismic data processing AVO INVERSION multi-wave
在线阅读 下载PDF
Stretching correction for amplitude-preserving vector wavefield reverse-time migration 被引量:1
4
作者 Jia-jia Yang Bing-shou He +3 位作者 Hua-ning Xu Jun Pan Jun Liu Hong Liu 《China Geology》 2019年第2期179-188,共10页
The migration of multi-wave seismic data is aimed at obtaining the P- and S-wave imaging results of the amplitude preserving. But the P- and S-wave stretching effect produced by the reverse time migration of the elast... The migration of multi-wave seismic data is aimed at obtaining the P- and S-wave imaging results of the amplitude preserving. But the P- and S-wave stretching effect produced by the reverse time migration of the elastic wave equation will not only reduce the vertical resolution of the migration results and the amplitude preserving of the large reflection angle. In this paper, the reverse time migration technique of amplitude preserving vector wave-field separating is used. Based on the analysis of the stretch mechanism and the influencing factors of stretch magnitude, the paper gave the stretch correcting factors. Then, realize the stretch correction method at the time that after the reverse extrapolation and before the imaging by solving the problem which is how to calculate the P-wave and Ps-wave propagation directions of imaging points at different times. The stretch correction method can improve the vertical resolution and amplitude fidelity of the imaging results and provide high fidelity input data for seismic data interpretation and inversion. 展开更多
关键词 Reverse-time MIGRATION multi-wave and multi-component MIGRATION stretch CORRECTION Amplitude-preserving IMAGING seismic MIGRATION IMAGING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部