Wind tunnel tests were carried out to investigate the aerodynamic interference between a triple-box girder and trains,involving static aerodynamic forces and vortex-induced vibrations(VIVs).Static and dynamic sectiona...Wind tunnel tests were carried out to investigate the aerodynamic interference between a triple-box girder and trains,involving static aerodynamic forces and vortex-induced vibrations(VIVs).Static and dynamic sectional models of the girder and trains were employed for aerodynamic force measurement and VIV test,respectively.Results indicate that the aerodynamic interference effect on static aerodynamic forces of both the girder and trains is remarkable.When a single train exists,the horizontal position of the train has a small effect on aerodynamic coefficients of the girder.When two trains meet on the girder,the drag coefficient of the girder is significantly reduced compared with that of without train or with a single train;besides,during the whole meeting process,aerodynamic forces of the leeward train first drop and then increase suddenly.The fluctuation of aerodynamic force could cause redundant vibration of the train,which is unfavorable for safety and comfort.A train on the girder could worsen the girder VIV performance:a new vertical VIV appears in the triple-box girder when a train is on the girder,and the torsional VIV amplitude increases significantly when the train is on the windward side.展开更多
For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test...For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85.展开更多
A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation...A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation of a modern transonic business jet aircraft with a design Mach number of 0.85. Numerical simulations for the AVM are conducted for two geometries: one baseline geometry, and one geometry that includes the applied model support system of the wind tunnel as well as the deformed wing shape that occurred during wind tunnel testing. The combined influence of wing deformation and model support interference on local and integral aerodynamic features is presented. Comparisons between CFD and experimental results are made; reasons of discrepancy between results from considered cases are analyzed.展开更多
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation...By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.展开更多
The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of ...The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of the sound source with discrete frequency. The effects of the interval between the cylinder and the airfoil on the characteristics of aerodynamic sound are investigated by acoustic measurement, flow visualization and exploration test of sound source. The relation between the flow field and the sound field with discrete frequency noise(DFN) is shown, and then it is found that the downstream airfoil works as the sound source of DFN, which has the frequency of vortex shedding from the upstream cylinder, when the interval of two bodies is longer than a critical distance.展开更多
The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angle...The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks.The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck.The drag coefficients of a windward deck decrease slightly com-pared with that of a single deck.The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks.And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.展开更多
采用基于剪切应力输运模型的改进延迟分离涡模拟(improvement of delay detached-eddy simulation,IDDES)方法对两串列圆锥柱体高雷诺数流动干扰问题进行了数值计算,分析了不同间距比对流场结构和受扰圆锥柱体气动力特性的影响。结果表...采用基于剪切应力输运模型的改进延迟分离涡模拟(improvement of delay detached-eddy simulation,IDDES)方法对两串列圆锥柱体高雷诺数流动干扰问题进行了数值计算,分析了不同间距比对流场结构和受扰圆锥柱体气动力特性的影响。结果表明:间距比对两串列圆锥柱体的流场特性影响明显;当间距比为2时,下游圆锥柱体受到上游圆锥柱体的遮挡影响,其平均阻力系数较低;当间距比为4时,上游圆锥柱体的尾涡在下游圆锥柱体表面发生再附,下游(受扰)圆锥柱体的脉动阻力系数比小间距比时有所增加;随着间距比的继续增加,当间距比为8时,上、下游圆锥柱体形成各自的旋涡脱落,下游圆锥柱体的脉动升力系数明显高于间距比为2~4时的情况。展开更多
基金Project(52025082) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(CX20190288) supported by Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Wind tunnel tests were carried out to investigate the aerodynamic interference between a triple-box girder and trains,involving static aerodynamic forces and vortex-induced vibrations(VIVs).Static and dynamic sectional models of the girder and trains were employed for aerodynamic force measurement and VIV test,respectively.Results indicate that the aerodynamic interference effect on static aerodynamic forces of both the girder and trains is remarkable.When a single train exists,the horizontal position of the train has a small effect on aerodynamic coefficients of the girder.When two trains meet on the girder,the drag coefficient of the girder is significantly reduced compared with that of without train or with a single train;besides,during the whole meeting process,aerodynamic forces of the leeward train first drop and then increase suddenly.The fluctuation of aerodynamic force could cause redundant vibration of the train,which is unfavorable for safety and comfort.A train on the girder could worsen the girder VIV performance:a new vertical VIV appears in the triple-box girder when a train is on the girder,and the torsional VIV amplitude increases significantly when the train is on the windward side.
文摘For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85.
基金supported by the Grant Agreement(No.4.628.21.0004)with the Ministry of Education and Science of the Russian Federation(project unique identifier RFMEFI62815X0004)on the theme‘‘Development and implementation of the optimization of the aircraft power plant aerodynamics as a part of a 3rd generation multidisciplinary optimization and its application to optimization of promising new types of aircraft”
文摘A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation of a modern transonic business jet aircraft with a design Mach number of 0.85. Numerical simulations for the AVM are conducted for two geometries: one baseline geometry, and one geometry that includes the applied model support system of the wind tunnel as well as the deformed wing shape that occurred during wind tunnel testing. The combined influence of wing deformation and model support interference on local and integral aerodynamic features is presented. Comparisons between CFD and experimental results are made; reasons of discrepancy between results from considered cases are analyzed.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
基金The work was supported by the Ministry of Science and Technology of China through the Fundamental Research Fund for State Key Laboratories(Grant No.SLDRCE08-A-02)the National Nature Science Foundation of China(Grant No.50978204).
文摘By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.
文摘The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of the sound source with discrete frequency. The effects of the interval between the cylinder and the airfoil on the characteristics of aerodynamic sound are investigated by acoustic measurement, flow visualization and exploration test of sound source. The relation between the flow field and the sound field with discrete frequency noise(DFN) is shown, and then it is found that the downstream airfoil works as the sound source of DFN, which has the frequency of vortex shedding from the upstream cylinder, when the interval of two bodies is longer than a critical distance.
基金The work was supported by the National Natural Science Foundation of China(Grant No.50608030).
文摘The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks.The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck.The drag coefficients of a windward deck decrease slightly com-pared with that of a single deck.The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks.And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.
文摘采用基于剪切应力输运模型的改进延迟分离涡模拟(improvement of delay detached-eddy simulation,IDDES)方法对两串列圆锥柱体高雷诺数流动干扰问题进行了数值计算,分析了不同间距比对流场结构和受扰圆锥柱体气动力特性的影响。结果表明:间距比对两串列圆锥柱体的流场特性影响明显;当间距比为2时,下游圆锥柱体受到上游圆锥柱体的遮挡影响,其平均阻力系数较低;当间距比为4时,上游圆锥柱体的尾涡在下游圆锥柱体表面发生再附,下游(受扰)圆锥柱体的脉动阻力系数比小间距比时有所增加;随着间距比的继续增加,当间距比为8时,上、下游圆锥柱体形成各自的旋涡脱落,下游圆锥柱体的脉动升力系数明显高于间距比为2~4时的情况。