提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容...提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。展开更多
Earthwork productivity analysis is essential for successful construction projects.If productivity analysis results can be accessed anytime and anywhere,then project management can be performed more efficiently.To this...Earthwork productivity analysis is essential for successful construction projects.If productivity analysis results can be accessed anytime and anywhere,then project management can be performed more efficiently.To this end,this paper proposes an earthwork productivity monitoring framework via a real-time scene updating multi-vision platform.The framework consists of four main processes:1)site-optimized database development;2)real-time monitoring model updating;3)multi-vision productivity monitoring;and 4)web-based monitoring platform for Internetconnected devices.The experimental results demonstrated satisfactory performance,with an average macro F1-score of 87.3%for continuous site-specific monitoring,an average accuracy of 86.2%for activity recognition,and the successful operation of multi-vision productivity monitoring through a web-based platform in real time.The findings can contribute to supporting site managers to understand real-time earthmoving operations while achieving better construction project and information management.展开更多
Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, th...Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, the transport structure is vulnerable, under attack, or even damaged or destroyed. This is prompting decision-makers to look for every possible way to enable dynamic management of the road system, as well as the collection of tax revenues attributable to this sector. To reach this stage, we postulate that the introduction of the Intelligent Transport System (ITS) into the road tax and fee collection process would make a significant contribution (road safety, zero cash on silk Safety Officers, payment of a fine, eradication of road corruption etc.) to the digitization of the various transport sectors. As far as the city of Bujumbura is concerned (our field of intervention), the applicability of the present System could thus meet the expectations of the decision-maker, certain drivers and, by the same token, contribute to the promotion of Digital Technology in Burundi.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
文摘提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Nos.RS-2023-00241758,2021R1A2C2003696,and RS-2024-00334513).
文摘Earthwork productivity analysis is essential for successful construction projects.If productivity analysis results can be accessed anytime and anywhere,then project management can be performed more efficiently.To this end,this paper proposes an earthwork productivity monitoring framework via a real-time scene updating multi-vision platform.The framework consists of four main processes:1)site-optimized database development;2)real-time monitoring model updating;3)multi-vision productivity monitoring;and 4)web-based monitoring platform for Internetconnected devices.The experimental results demonstrated satisfactory performance,with an average macro F1-score of 87.3%for continuous site-specific monitoring,an average accuracy of 86.2%for activity recognition,and the successful operation of multi-vision productivity monitoring through a web-based platform in real time.The findings can contribute to supporting site managers to understand real-time earthmoving operations while achieving better construction project and information management.
文摘Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, the transport structure is vulnerable, under attack, or even damaged or destroyed. This is prompting decision-makers to look for every possible way to enable dynamic management of the road system, as well as the collection of tax revenues attributable to this sector. To reach this stage, we postulate that the introduction of the Intelligent Transport System (ITS) into the road tax and fee collection process would make a significant contribution (road safety, zero cash on silk Safety Officers, payment of a fine, eradication of road corruption etc.) to the digitization of the various transport sectors. As far as the city of Bujumbura is concerned (our field of intervention), the applicability of the present System could thus meet the expectations of the decision-maker, certain drivers and, by the same token, contribute to the promotion of Digital Technology in Burundi.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.