期刊文献+
共找到36,018篇文章
< 1 2 250 >
每页显示 20 50 100
基于Depth-YOLO的半导体键合引线缺陷检测算法
1
作者 于乃功 李奥 杨弈 《工程科学学报》 北大核心 2025年第11期2281-2295,共15页
引线键合作为集成电路封装环节的关键步骤,其作用是将不同元器件和芯片相互连接,确保电路的正常工作,其质量检测关乎产品良率.针对现有键合引线缺陷检测方法检测精度和检测效率较低的问题,本文提出一种新的缺陷检测模型:Depth-YOLO.首先... 引线键合作为集成电路封装环节的关键步骤,其作用是将不同元器件和芯片相互连接,确保电路的正常工作,其质量检测关乎产品良率.针对现有键合引线缺陷检测方法检测精度和检测效率较低的问题,本文提出一种新的缺陷检测模型:Depth-YOLO.首先,该模型重建了YOLOv8模型的输入端,使模型能够处理输入图像的深度信息.其次,提出一种输入特征增强模块,增强模型对引线深度信息和纹理特征的提取能力.随后,用C2f_Faster模块替换原YOLOv8主干网络的C2f模块,降低模型参数量,减少计算冗余.接着,提出一种融合注意力机制(MDFA),增强模型对密集复杂不规则缺陷的特征提取能力,提升检测精度.最后,用WIoU代替原YOLOv8的损失函数CIoU,提高模型对目标检测框的判断准确性,加快收敛速度.针对目前相关研究领域没有键合引线公开数据集的问题,自制键合引线深度图像数据集DepthBondingWire.在自制数据集的实验结果表明,Depth-YOLO模型相比于原YOLOv8模型mAP@0.5提升了7.2个百分点,达到了98.6%.与其他主流目标检测模型相比具有较高的检测精度.本文提出的方法可有效实现半导体键合引线高精度自动化检测,并可以辐射到集成电路其他关键工艺的缺陷检测. 展开更多
关键词 键合引线 缺陷检测 YOLOv8 深度图像 注意力机制
在线阅读 下载PDF
Application of the improved dung beetle optimizer,muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area,China 被引量:1
2
作者 Jiarui Cai Bo Sun +5 位作者 Huijun Wang Yi Zheng Siyu Zhou Huixin Li Yanyan Huang Peishu Zong 《Atmospheric and Oceanic Science Letters》 2025年第1期18-23,共6页
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th... Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance. 展开更多
关键词 Groundwater depth Multi-head attention Improved dung beetle optimizer CNN-LSTM CNN-GRU Ningxia
在线阅读 下载PDF
Multi-view BLUP:a promising solution for post-omics data integrative prediction 被引量:1
3
作者 Bingjie Wu Huijuan Xiong +3 位作者 Lin Zhuo Yingjie Xiao Jianbing Yan Wenyu Yang 《Journal of Genetics and Genomics》 2025年第6期839-847,共9页
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as... Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data. 展开更多
关键词 multi-view data Best linear unbiased prediction Similarity function Phenotype prediction Differential evolution algorithm
原文传递
An improved method to evaluate trap depth from thermoluminescence 被引量:1
4
作者 Shiyou Zhang Fangyi Zhao +2 位作者 Shengqiang Liu Zhen Song Quanlin Liu 《Journal of Rare Earths》 2025年第2期262-269,I0002,共9页
Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level st... Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level stemming from the doped rare earth ion or intrinsic defects to the electronic structure of the host,and therefore thermoluminescence measurement becomes a radical technology in studying trap depth,which is one of the significant parameters that determine the properties of persistent luminescence and photostimulated luminescence.However,the results of trap depth obtained by different thermoluminescence methods are quite different so that they are not comparable.Herein,we analyzed different thermoluminescence methods,selected and improved the traditional peak position method of T_(m)/500 to be E=(-0.94Inβ+30.09)kT_(m).Only the experimental heating rate(β)is needed additionally,but the accuracy is improved greatly in most cases.This convenient and accurate method will accelerate the discovery of novel rare earth-doped materials. 展开更多
关键词 THERMOLUMINESCENCE Persistent luminescence Photostimulated luminescence Rare earths Trap depth
原文传递
TalentDepth:基于多尺度注意力机制的复杂天气场景单目深度估计模型
5
作者 张航 卫守林 殷继彬 《计算机科学》 北大核心 2025年第S1期442-448,共7页
对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机... 对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机制的单目深度估计模型TalentDepth,以实现对复杂天气场景的预测。首先,在编码器中融合多尺度注意力机制,在减少计算成本的同时,保留每个通道的信息,提高特征提取的效率和能力。其次,针对图像深度不清晰的问题,基于几何一致性,提出深度区域细化(Depth Region Refinement,DSR)模块,过滤不准确的像素点,以提高深度信息的可靠性。最后,输入图像翻译模型所生成的复杂样本,并计算相应原始图像上的标准损失来指导模型的自监督训练。在NuScence,KITTI和KITTI-C这3个数据集上,相比于基线模型,所提模型对误差和精度均有优化。 展开更多
关键词 单目深度估计 自监督学习 多尺度注意力 知识提炼 深度学习
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
6
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
High Quality Monocular Video Depth Estimation Based on Mask Guided Refinement
7
作者 Huixiao Pan Qiang Zhao 《Journal of Beijing Institute of Technology》 2025年第1期18-27,共10页
Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a signi... Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision.However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture.To address this issue,we propose a monocular depth estimation model architecture guided by semantic segmentation masks,which introduces semantic information into the model to correct the ambiguous depth regions.We have evaluated the proposed method,and experimental results show that our method improves the accuracy of edge depth,demonstrating the effectiveness of our approach. 展开更多
关键词 monocular video depth estimation depth refinement edge depth accuracy semantic segmentation
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction
8
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction multi-view fusion Attention mechanism Multi-task deep learning
原文传递
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
9
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
10
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
LpDepth:基于拉普拉斯金字塔的自监督单目深度估计
11
作者 曹明伟 邢景杰 +1 位作者 程宜风 赵海锋 《计算机科学》 北大核心 2025年第3期33-40,共8页
自监督单目深度估计受到了国内外研究人员的广泛关注。现有基于深度学习的自监督单目深度估计方法主要采用编码器-解码器结构。然而,这些方法在编码过程中对输入图像进行下采样操作,导致部分图像信息,尤其是图像的边界信息丢失,进而影... 自监督单目深度估计受到了国内外研究人员的广泛关注。现有基于深度学习的自监督单目深度估计方法主要采用编码器-解码器结构。然而,这些方法在编码过程中对输入图像进行下采样操作,导致部分图像信息,尤其是图像的边界信息丢失,进而影响深度图的精度。针对上述问题,提出一种基于拉普拉斯金字塔的自监督单目深度估计方法(Self-supervised Monocular Depth Estimation Based on the Laplace Pyramid,LpDepth)。此方法的核心思想是:首先,使用拉普拉斯残差图丰富编码特征,以弥补在下采样过程中丢失的特征信息;其次,在下采样过程中使用最大池化层突显和放大特征信息,使编码器在特征提取过程中更容易地提取到训练模型所需要的特征信息;最后,使用残差模块解决过拟合问题,提高解码器对特征的利用效率。在KITTI和Make3D等数据集上对所提方法进行了测试,同时将其与现有经典方法进行了比较。实验结果证明了所提方法的有效性。 展开更多
关键词 单目深度估计 拉普拉斯金字塔 残差网络 深度图
在线阅读 下载PDF
Advancing depth perception in spatial computing with binocular metalenses
12
作者 Junkyeong Park Gyeongtae Kim Junsuk Rho 《Opto-Electronic Advances》 2025年第1期1-3,共3页
Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their us... Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems. 展开更多
关键词 metasurface metalens deep learning depth perception edge detection
在线阅读 下载PDF
Direct measurement and optimization of the polarization-dependent modulation depth in super-resolution structured illumination microscopy
13
作者 Linbo Wang Simin Li +4 位作者 Xiaohu Chen Xin Jin Jie Zhang Hui Li Gang Wen 《Journal of Innovative Optical Health Sciences》 2025年第4期121-131,共11页
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical... Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement. 展开更多
关键词 Structured illumination microscopy DEPOLARIZATION modulation depth phase compensation
原文传递
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
14
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing multi-view learning Chemical-induced transcriptional profile Knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes
15
作者 Peicheng Shi Yueyue Tang +3 位作者 Yi Li Xinlong Dong Yu Sun Aixi Yang 《Computers, Materials & Continua》 2025年第8期3321-3343,共23页
In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estima... In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estimation model based on edge enhancement,which is specifically aimed at the depth perception challenge in dynamic scenes.The model consists of two core networks:a deep prediction network and a motion estimation network,both of which adopt an encoder-decoder architecture.The depth prediction network is based on the U-Net structure of ResNet18,which is responsible for generating the depth map of the scene.The motion estimation network is based on the U-Net structure of Flow-Net,focusing on the motion estimation of dynamic targets.In the decoding stage of the motion estimation network,we innovatively introduce an edge-enhanced decoder,which integrates a convolutional block attention module(CBAM)in the decoding process to enhance the recognition ability of the edge features of moving objects.In addition,we also designed a strip convolution module to improve the model’s capture efficiency of discrete moving targets.To further improve the performance of the model,we propose a novel edge regularization method based on the Laplace operator,which effectively accelerates the convergence process of themodel.Experimental results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised monocular model,the proposed model has a significant improvement in depth estimation accuracy and convergence speed.Specifically,the rootmean square error(RMSE)is reduced by 4.8%compared with the DepthMotion algorithm,while the training convergence speed is increased by 36%,which shows the superior performance of the model in the depth estimation task in dynamic scenes. 展开更多
关键词 Dynamic scenes unsupervised learning monocular depth edge enhancement
在线阅读 下载PDF
Research on multi-view collaborative detection system for UAV swarms based on Pix2Pix framework and BAM attention mechanism
16
作者 Yan Ding Qingxin Cao +2 位作者 Bozhi Zhang Peilin Li Zhongjiao Shi 《Defence Technology(防务技术)》 2025年第4期213-226,共14页
Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an... Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects. 展开更多
关键词 Drone swarm systems Reconnaissance and strike Image generation multi-view detection Pix2Pix framework Attention mechanism
在线阅读 下载PDF
Effect of water on dynamic mechanical properties of coal under different depth stress conditions
17
作者 LI Sheng-wei GAO Ming-zhong +2 位作者 LI Ye-xue WANG Jun ZENG Gang 《Journal of Central South University》 2025年第1期220-228,共9页
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-... Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters. 展开更多
关键词 COAL mining depths water saturation SHPB dynamic compressive strength
在线阅读 下载PDF
轻量化的低成本海洋机器人深度估计方法EDepth
18
作者 陈东烁 柴春来 +1 位作者 叶航 张思赟 《计算机应用》 北大核心 2025年第S1期106-113,共8页
针对传统单目深度估计方法在海洋环境中存在的精度低、鲁棒性差、运行速度慢和难以部署等问题,提出一种轻量化的海洋机器人深度估计方法,命名为EDepth(EfficientDepth)。该方法旨在提升低成本海洋机器人的三维(3D)感知能力。首先,利用... 针对传统单目深度估计方法在海洋环境中存在的精度低、鲁棒性差、运行速度慢和难以部署等问题,提出一种轻量化的海洋机器人深度估计方法,命名为EDepth(EfficientDepth)。该方法旨在提升低成本海洋机器人的三维(3D)感知能力。首先,利用水下光衰减先验,通过空间转换将输入数据从原始RGB(Red-Green-Blue)图像空间映射到RBI(Red-BlueIntensity)输入域,从而提高深度估计的准确性;其次,采用高效的EfficientFormerV2作为特征提取模块,并结合视觉注意力机制MiniViT(Mini Vision Transformer)和光衰减模块实现深度信息的有效提取和处理;此外,通过自适应分区的设计,MiniViT模块能够动态调整深度区间,从而提高深度估计的精度;最后,优化网络结构,从而在不牺牲性能的前提下,实现高效的计算。实验结果表明,EDepth在RGB-D(Red-Green-Blue Depth)数据集USOD10K上的深度估计性能显著优于传统方法。具体来说,EDepth在平均绝对相对误差(Abs Rel)上达到了0.587,而DenseDepth为0.519,尽管DenseDepth在某些指标上表现更佳,但相较于DenseDepth的4 461万参数和171.44 MB的内存占用,EDepth仅有461万参数,减少了89.67%的参数量,而内存占用减少至23.56 MB,且在单个CPU上EDepth的每秒帧数(FPS)达到了14.11,明显优于DenseDepth的2.45。可见,EDepth在深度估计性能和计算效率之间取得了良好的平衡。 展开更多
关键词 三维感知 自适应分区 计算效率 EfficientFormerV2 海洋机器人 单目深度估计
在线阅读 下载PDF
DepthMamba:多尺度VisionMamba架构的单目深度估计
19
作者 徐志斌 张孙杰 《计算机应用研究》 北大核心 2025年第3期944-948,共5页
在单目深度估计领域,虽然基于CNN和Transformer的模型已经得到了广泛的研究,但是CNN全局特征提取不足,Transformer则具有二次计算复杂性。为了克服这些限制,提出了一种用于单目深度估计的端到端模型,命名为DepthMamba。该模型能够高效... 在单目深度估计领域,虽然基于CNN和Transformer的模型已经得到了广泛的研究,但是CNN全局特征提取不足,Transformer则具有二次计算复杂性。为了克服这些限制,提出了一种用于单目深度估计的端到端模型,命名为DepthMamba。该模型能够高效地捕捉全局信息并减少计算负担。具体地,该方法引入了视觉状态空间(VSS)模块构建编码器-解码器架构,以提高模型提取多尺度信息和全局信息的能力。此外,还设计了MLPBins深度预测模块,旨在优化深度图的平滑性和整洁性。最后在室内场景NYU_Depth V2数据集和室外场景KITTI数据集上进行了综合实验,实验结果表明:与基于视觉Transformer架构的Depthformer相比,该方法网络参数量减少了27.75%,RMSE分别减少了6.09%和2.63%,验证了算法的高效性和优越性。 展开更多
关键词 单目深度估计 Vmamba Bins深度预测 状态空间模型
在线阅读 下载PDF
Fine-mapping and candidate gene analysis of tuber eye depth in potato
20
作者 Guiyan Fan Shaoguang Duan +8 位作者 Yuting Yang Yanfeng Duan Yinqiao Jian Jun Hu Zhiyuan Liu Yang-dong Guo Liping Jin Jianfei Xu Guangcun Li 《Horticultural Plant Journal》 2025年第3期1248-1259,共12页
Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breedin... Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms. 展开更多
关键词 BSA-seq Eye depth PEROXIDASE Potato tuber Quantitative trait loci
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部