期刊文献+
共找到239篇文章
< 1 2 12 >
每页显示 20 50 100
基于ERH-Stereo立体匹配PCBA元件高度测量算法 被引量:2
1
作者 张嘉龙 刘桂雄 周善龙 《激光杂志》 北大核心 2025年第1期68-74,共7页
针对柔性化功能测试中实装电路板(Printed Circuit Board Assembly,PCBA)元件高度测量传统方法操作不便、效率较低问题,提出一种基于ERH-Stereo立体匹配PCBA元件高度测量算法,由双目测距原理采集PCBA对象获得RGB图像,再由RAFT-Stereo加... 针对柔性化功能测试中实装电路板(Printed Circuit Board Assembly,PCBA)元件高度测量传统方法操作不便、效率较低问题,提出一种基于ERH-Stereo立体匹配PCBA元件高度测量算法,由双目测距原理采集PCBA对象获得RGB图像,再由RAFT-Stereo加以ECA+UHRNet创新ERH-Stereo立体匹配网络结构获得PCBA高精度视差图,进而求得PCBA深度信息、元件高度。实验表明,ERH-Stereo在Scene Flow数据集上EPE、D1指标达到0.43%、5.1%,高度测量绝对误差均<1 mm,可以满足实际指导PCBA测试治具柔性化设计要求。 展开更多
关键词 高度测量 实装电路板 立体匹配网络 注意力机制 高分辨率网络
原文传递
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
2
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing multi-view learning Chemical-induced transcriptional profile Knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
Color Correction for Multi-view Video Using Energy Minimization of View Networks 被引量:4
3
作者 Kenji Yamamoto Ryutaro Oi 《International Journal of Automation and computing》 EI 2008年第3期234-245,共12页
Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based ... Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well. 展开更多
关键词 multi-view color correction image-based rendering (IBR) view networks (VNs) scale invariant feature transform (SIFT) energy minimization.
在线阅读 下载PDF
A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism 被引量:2
4
作者 Jiabin Wang Kai Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期345-363,共19页
In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may b... In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition. 展开更多
关键词 EMG signal capture channel attention mechanism convolutional neural network multi-view gait recognition gait characteristics BACK-PROPAGATION
在线阅读 下载PDF
Stereo Matching Method Based on Space-Aware Network Model 被引量:1
5
作者 Jilong Bian Jinfeng Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期175-189,共15页
The stereo matching method based on a space-aware network is proposed, which divides the network into threesections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue netwo... The stereo matching method based on a space-aware network is proposed, which divides the network into threesections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue network and densenetwork into the space-aware network model. The vertical splitting method for computing matching cost by usingthe space-aware network is proposed for solving the limitation of GPU RAM. Moreover, a hybrid loss is broughtforward to boost the performance of the proposed deep network. In the proposed stereo matching method, thespace-aware network is used to calculate the matching cost and then cross-based cost aggregation and semi-globalmatching are employed to compute a disparity map. Finally, a disparity-post processing method is utilized suchas subpixel interpolation, median filter, and bilateral filter. The experimental results show this method has a goodperformance on running time and accuracy, with a percentage of erroneous pixels of 1.23% on KITTI 2012 and1.94% on KITTI 2015. 展开更多
关键词 Deep learning stereo matching space-aware network hybrid loss
在线阅读 下载PDF
A Skeletal Camera Network for Close-range Images with a Data Driven Approach in Analyzing Stereo Configuration 被引量:3
6
作者 Zhihua XU Lingling QU 《Journal of Geodesy and Geoinformation Science》 2022年第4期23-37,共15页
Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t... Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable. 展开更多
关键词 3D geometry reconstruction geometric factors skeletal camera network STRUCTURE-FROM-MOTION tie-point matching terrestrial stereo images
在线阅读 下载PDF
Relational graph location network for multi-view image localization
7
作者 YANG Yukun LIU Xiangdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期460-468,共9页
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa... In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy. 展开更多
关键词 multi-view image localization graph construction heterogeneous graph graph neural network
在线阅读 下载PDF
Adaptive Recurrent Iterative Updating Stereo Matching Network
8
作者 Qun Kong Liye Zhang +2 位作者 Zhuang Wang Mingkai Qi Yegang Li 《Journal of Computer and Communications》 2023年第3期83-98,共16页
When training a stereo matching network with a single training dataset, the network may overly rely on the learned features of the single training dataset due to differences in the training dataset scenes, resulting i... When training a stereo matching network with a single training dataset, the network may overly rely on the learned features of the single training dataset due to differences in the training dataset scenes, resulting in poor performance on all datasets. Therefore, feature consistency between matched pixels is a key factor in solving the network’s generalization ability. To address this issue, this paper proposed a more widely applicable stereo matching network that introduced whitening loss into the feature extraction module of stereo matching, and significantly improved the applicability of the network model by constraining the variation between salient feature pixels. In addition, this paper used a GRU iterative update module in the disparity update calculation stage, which expanded the model’s receptive field at multiple resolutions, allowing for precise disparity estimation not only in rich texture areas but also in low texture areas. The model was trained only on the Scene Flow large-scale dataset, and the disparity estimation was conducted on mainstream datasets such as Middlebury, KITTI 2015, and ETH3D. Compared with earlier stereo matching algorithms, this method not only achieves more accurate disparity estimation but also has wider applicability and stronger robustness. 展开更多
关键词 stereo Matching Whitening Loss Feature Consistency Convolutional Neural network GRU
在线阅读 下载PDF
Shading aware DSM generation from high resolution multi-view satellite images
9
作者 Zhihua Hu Pengjie Tao +1 位作者 Xiaoxiang Long Haiyan Wang 《Geo-Spatial Information Science》 CSCD 2024年第2期398-407,共10页
In many cases,the Digital Surface Models(DSMs)and Digital Elevation Models(DEMs)are obtained with Light Detection and Ranging(LiDAR)or stereo matching.As an active method,LiDAR is very accurate but expensive,thus ofte... In many cases,the Digital Surface Models(DSMs)and Digital Elevation Models(DEMs)are obtained with Light Detection and Ranging(LiDAR)or stereo matching.As an active method,LiDAR is very accurate but expensive,thus often limiting its use in small-scale acquisition.Stereo matching is suitable for large-scale acquisition of terrain information as the increase of satellite stereo sensors.However,underperformance of stereo matching easily occurs in textureless areas.Accordingly,this study proposed a Shading Aware DSM GEneration Method(SADGE)with high resolution multi-view satellite images.Considering the complementarity of stereo matching and Shape from Shading(SfS),SADGE combines the advantage of stereo matching and SfS technique.First,an improved Semi-Global Matching(SGM)technique is used to generate an initial surface expressed by a DSM;then,it is refined by optimizing the objective function which modeled the imaging process with the illumination,surface albedo,and normal object surface.Different from the existing shading-based DEM refinement or generation method,no information about the illumination or the viewing angle is needed while concave/convex ambiguity can be avoided as multi-view images are utilized.Experiments with ZiYuan-3 and GaoFen-7 images show that the proposed method can generate higher accuracy DSM(12.5-56.3%improvement)with sound overall shape and temporarily detailed surface compared with a software solution(SURE)for multi-view stereo. 展开更多
关键词 Shape from Shading(SfS) multi-view stereo Digital Surface Model(DSM) high resolution multi-view satellite images
原文传递
基于卷积神经网络的立体匹配算法研究 被引量:1
10
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
气动软体机械臂的视觉定位运动控制
11
作者 张禹 张政 +3 位作者 赵文川 彭龄慧 王宁 孙赫阳 《液压与气动》 北大核心 2025年第7期116-124,共9页
气动软体机械臂因其非线性强、多变量耦合复杂以及状态实时观测困难,给动态控制带来显著挑战。针对上述问题,提出一种融合视觉定位与神经网络建模的软体机械臂实时运动控制方法。该方法利用YOLOv8目标检测和半全局立体匹配算法构建视觉... 气动软体机械臂因其非线性强、多变量耦合复杂以及状态实时观测困难,给动态控制带来显著挑战。针对上述问题,提出一种融合视觉定位与神经网络建模的软体机械臂实时运动控制方法。该方法利用YOLOv8目标检测和半全局立体匹配算法构建视觉系统,并生成时序数据集;进一步通过长短期记忆网络模型捕捉软体机械臂动态响应规律,实现气腔压强与末端位置之间的映射建模。结果表明,与基于离散数据训练的神经网络模型相比,长短期记忆网络模型在三路气压预测中的平均绝对误差从约1.65 kPa显著降至0.44 kPa。进一步的实验结果显示,对于所提出的控制方法,软体机械臂末端在三个轴方向上平均绝对误差分别为1.503、1.506、2.825 mm,有效验证了基于视觉定位的时序神经网络控制方法在软体机械臂中的动态追踪能力。 展开更多
关键词 软体机械臂 长短期记忆网络 双目视觉 建模与控制
在线阅读 下载PDF
基于模糊理论的立体车库非线性动态库位分配策略
12
作者 李建国 赵剑英 钟高卫 《深圳大学学报(理工版)》 北大核心 2025年第6期706-713,共8页
为提高平面移动式立体车库服务效率,提出一种考虑驻留时间和库位分布均衡的非线性动态库位分配策略.采用贝叶斯优化超参数的长短时记忆神经网络对立体车库库内车辆驻留时间进行预测,结合库位占用状态属性,基于模糊理论建立分区运算规则... 为提高平面移动式立体车库服务效率,提出一种考虑驻留时间和库位分布均衡的非线性动态库位分配策略.采用贝叶斯优化超参数的长短时记忆神经网络对立体车库库内车辆驻留时间进行预测,结合库位占用状态属性,基于模糊理论建立分区运算规则,以驻留时间和库位占用密度为依据实现非线性分区分配,设计均衡性检测算法以及相邻库位迁移策略,进行库位占用均衡性检验并动态调整分区库位占用.以用于车辆存取操作的搬运台车(rail guided vehicle,RGV)平均运行能耗和平均服务时间为车库运行效率评价指标,利用禁忌搜索算法实现对分区内空闲库位寻优.结果表明,与实际工程中采用的就近分配策略相比,立体车库平均服务时间缩短14.3%,平均运行能耗降低23.8%,库位占用分布均衡标准差降低90.28%,证明考虑车辆驻留时间和库位分布均衡性的动态库位分配策略有效. 展开更多
关键词 交通运输工程 立体车库 库位分配 模糊控制 长短时记忆神经网络 禁忌搜索
在线阅读 下载PDF
融合立体匹配算法与深度网络的机器人视觉三维建模动画研究
13
作者 李鹏 王卉 《自动化与仪器仪表》 2025年第2期233-237,共5页
针对机器人的视觉三维建模动画方法低准确性与泛化性差的问题,研究提出了基于立体匹配算法的双目视觉同步定位与构图方法,并设计了融合立体匹配算法与深度网络的视觉三维建模动画方法。研究结果表明,研究方法在室外环境中平均交并比与... 针对机器人的视觉三维建模动画方法低准确性与泛化性差的问题,研究提出了基于立体匹配算法的双目视觉同步定位与构图方法,并设计了融合立体匹配算法与深度网络的视觉三维建模动画方法。研究结果表明,研究方法在室外环境中平均交并比与整体精度分别为0.764与0.876 3,在室内场景中的各指标分别对应0.895 3和0.901 7,与目前最主流的方法相比,研究方法的绝对平均误差与正向平均误差分别减少了85.06%与85.71%。在实际应用效果中,研究方法能精准分割与识别场景中的部件类别。上述结果说明,研究方法能实现机器人视觉三维动画建模的高精度与适用性,提升机器人对不同环境的感知能力,为机器人进行双目实时动画场景的建模提供参考。 展开更多
关键词 立体匹配算法 深度网络 机器人视觉 三维建模 双目立体相机
原文传递
基于改进YOLOv8s的双目视觉道路障碍物检测与测距方法研究 被引量:1
14
作者 樊佳鑫 郑雨悦 +1 位作者 张丁骅 张正军 《计算机应用文摘》 2025年第3期73-77,80,共6页
为了提升汽车辅助系统对前方障碍物的检测效果并进一步获取精确的距离信息,文章提出了一种基于改进YOLOv8s的交通场景障碍物检测与双目测距方法。该方法以YOLOv8s(You Only Look Once v8s)网络为基础,首先在Backbone中引入EMA注意力机制... 为了提升汽车辅助系统对前方障碍物的检测效果并进一步获取精确的距离信息,文章提出了一种基于改进YOLOv8s的交通场景障碍物检测与双目测距方法。该方法以YOLOv8s(You Only Look Once v8s)网络为基础,首先在Backbone中引入EMA注意力机制,以提高目标检测精度;其次将Neck中的PANFPN网络替换为ASF(Attentional Scale Sequence Fusion)网络,并采用DIoU优化损失函数;在特征匹配算法ORB的基础上,利用RANSAC算法剔除误匹配的点对。通过在KITTI数据集和实际交通场景中的实验,结果表明,在20 m的距离范围内,改进后的YOLOv8s网络对汽车、行人和非机动车3类障碍物的检测mAP(mean average precision)达到了91.1%,提高了4.8%,同时测距的平均误差仅为1.55%。 展开更多
关键词 YOLOv8s 道路障碍检测 ASF网络 特征匹配 双目视觉测距
在线阅读 下载PDF
融合激光测高数据的无控GF-7卫星影像矿区DSM改进方法
15
作者 张云龙 胡文敏 +3 位作者 魏伟 秦凯 徐嘉兴 张炜 《遥感学报》 北大核心 2025年第9期2700-2713,共14页
针对沟壑发育地表无地面控制点GCPs(Ground Control Points)条件下卫星遥感立体影像地形三维重建精度较低、大面积GCPs采集困难或成本高等问题,本文提出融合卫星激光测高数据的高分七号(GF-7)卫星影像数字表面模型DSM(Digital Surface M... 针对沟壑发育地表无地面控制点GCPs(Ground Control Points)条件下卫星遥感立体影像地形三维重建精度较低、大面积GCPs采集困难或成本高等问题,本文提出融合卫星激光测高数据的高分七号(GF-7)卫星影像数字表面模型DSM(Digital Surface Model)BP神经网络方法。该方法通过建立无控条件下GF-7卫星立体影像生成的DSM、地理位置经度与纬度、地形坡度、地形误差等多因子与激光测高点GEDI(Global Ecosystem Dynamics Investigation)之间的关系,获取融合结果以改进无控条件下地形DSM精度。实验结果表明,沟壑发育地表矿区无控条件下GF-7卫星立体影像生成的DSM高程精度可高达20.49 m,而本文融合生成的DSM平均高程精度为1.63 m,与有控制点条件下地形DSM 1.44 m的高程精度基本相当。本文方法有效改善了沟壑发育地表矿区无控条件下卫星立体影像生成DSM高程精度质量低的问题,为国产高分影像推广应用与高精度地形建模提供新思路。 展开更多
关键词 数字表面模型 地面控制点 神经网络 沟壑发育地表 GF-7卫星立体影像 GEDI(Global Ecosystem Dynamics Investigation)
原文传递
LWMNet:一种视野宽广轻量级立体匹配算法
16
作者 何涛 韩涛 《兰州工业学院学报》 2025年第1期96-102,共7页
针对现有立体匹配算法精度低以及网络参数量过大的问题,提出了LWMNet(Light Weight Matching Network)。引入Fused-MBConv结构代替特征提取中部分Conv3*3,应用改进的残差模块LWC(Light Weight Concat)替换原有残差模块,设计了一种新的... 针对现有立体匹配算法精度低以及网络参数量过大的问题,提出了LWMNet(Light Weight Matching Network)。引入Fused-MBConv结构代替特征提取中部分Conv3*3,应用改进的残差模块LWC(Light Weight Concat)替换原有残差模块,设计了一种新的金字塔结构SPPC(Spatial Pyramid Pooling Concat)提取多尺度的空间特征信息,并增加跳跃连接,有效地融合不同尺度的特征信息,以降低误差。在SceneFlow公开的数据集进行实验,结果表明:与PSMNet方法相比,在参数数量下降了50.037%的同时,减少资源占用,误差降低了12.57%,提高了立体匹配的精度,提升了运行效率。 展开更多
关键词 深度估计 立体匹配 立体匹配网络 卷积神经网络 金字塔模块
在线阅读 下载PDF
贮箱液面三维形态的双目视觉测量方法
17
作者 张一鸣 郝方楠 +2 位作者 徐自力 张钰豪 张轩 《火箭推进》 北大核心 2025年第2期115-124,共10页
在地面试验过程中,准确测量推进剂贮箱的液面三维形态可以更好地表征晃动行为,对于液体晃动动力学特性研究以及贮箱结构优化设计具有重要意义,然而目前仍缺乏有效的高空间分辨率测量手段。提出了一种贮箱液面三维形态的双目视觉测量方法... 在地面试验过程中,准确测量推进剂贮箱的液面三维形态可以更好地表征晃动行为,对于液体晃动动力学特性研究以及贮箱结构优化设计具有重要意义,然而目前仍缺乏有效的高空间分辨率测量手段。提出了一种贮箱液面三维形态的双目视觉测量方法,通过随机散斑投影技术为液面补充特征信息;针对双目视角下液面特征点分布的稀疏性与不均匀性问题,采用由稀疏到稠密的匹配策略,将人工神经网络与SIFT特征算法相结合,建立一种高空间分辨率立体匹配算法,获取稠密且均匀分布的测点;基于双目视觉成像模型对测点三维坐标进行求解,实现液面形态的三维重建。开展了不同液位高度下的静态液面形态测量试验,所提方法的平均离面误差不超过2.3 mm,最大离面误差不超过3.0 mm。开展了简谐激励下的动态液面形态测量试验,所提方法的液面形态测量结果与有限元方法的模态振型计算结果一致,测量的液面晃动主频率与实际激励频率之间的相对误差为1.96%。结果表明,所提方法可以实现贮箱液面三维形态的高空间分辨率测量,具有较高的测量精度,且能够有效捕捉贮箱液面的动态行为。 展开更多
关键词 推进剂贮箱 液面形态测量 双目视觉 人工神经网络 立体匹配 三维重建
在线阅读 下载PDF
ETV-MVS:Robust Visibility-Aware Multi-View Stereo with Epipolar Line-Based Transformer
18
作者 Shaoqian Wang Xiaokun Ding +1 位作者 Yuxin Mao Yuchao Dai 《Big Data Mining and Analytics》 2025年第3期520-533,共14页
Multi-View Stereo(MVS)is a pivotal technique in computer vision for reconstructing 3D models from multiple images by estimating depth maps.However,the reconstruction performance is hindered by visibility challenges,su... Multi-View Stereo(MVS)is a pivotal technique in computer vision for reconstructing 3D models from multiple images by estimating depth maps.However,the reconstruction performance is hindered by visibility challenges,such as occlusions and non-overlapping regions.In this paper,we propose an innovative visibility-aware framework to address these issues.Central to our method is an Epipolar Line-based Transformer(ELT)module,which capitalizes on the epipolar line correspondence and candidate matching features between images to enhance the feature representation and correlation robustness.Furthermore,we propose a novel Supervised Visibility Estimation(SVE)module that estimates high-precision visibility maps,transcending the constraints of previous methods that rely on indirect supervision.By integrating these modules,our method achieves state-of-the-art results on the benchmarks and demonstrates its capability to perform high-quality reconstructions even in challenging regions.The code will be released at https://github.com/npucvr/ETV-MVS. 展开更多
关键词 multi-view stereo(MVS) Deep Neural networks(DNN) epipolar geometry TRANSFORMER
原文传递
Simplified multi-view graph neural network for multilingual knowledge graph completion
19
作者 Bingbing DONG Chenyang BU +2 位作者 Yi ZHU Shengwei JI Xindong WU 《Frontiers of Computer Science》 2025年第7期1-16,共16页
Knowledge graph completion(KGC)aims to fill in missing entities and relations within knowledge graphs(KGs)to address their incompleteness.Most existing KGC models suffer from knowledge coverage as they are designed to... Knowledge graph completion(KGC)aims to fill in missing entities and relations within knowledge graphs(KGs)to address their incompleteness.Most existing KGC models suffer from knowledge coverage as they are designed to operate within a single KG.In contrast,Multilingual KGC(MKGC)leverages seed pairs from different language KGs to facilitate knowledge transfer and enhance the completion of the target KG.Previous studies on MKGC based on graph neural networks(GNNs)have primarily focused on using relationaware GNNs to capture the combined features of neighboring entities and relations.However,these studies still have some shortcomings,particularly in the context of MKGCs.First,each language’s specific semantics,structures,and expressions contribute to the increased heterogeneity of the KG.Therefore,the completion of MKGCs necessitates a thorough consideration of the heterogeneity of the KG and the effective integration of its heterogeneous features.Second,MKGCs typically have a large graph scale due to the need to store and manage information from multiple languages.However,current relation-aware GNNs often inherit complex GNN operations,resulting in unnecessary complexity.Therefore,it is necessary to simplify GNN operations.To address these limitations,we propose a Simplified Multi-view Graph Neural Network(SMGNN)for MKGC.SM-GNN incorporates two simplified multiview GNNs as components.One GNN is utilized for learning multi-view graph features to complete the KG.The other generates new alignment pairs,facilitating knowledge transfer between different views of the KG.We simplify the two multiview GNNs by retaining feature propagation while discarding linear transformation and nonlinear activation to reduce unnecessary complexity and effectively leverage graph contextual information.Extensive experiments demonstrate that our proposed model outperforms competing baselines.The code and dataset are available at the website of github.com/dbbice/SM-GNN. 展开更多
关键词 multi-view knowledge graph graph neural network multilingual knowledge graph completion
原文传递
A multi-view heterogeneous and extractive graph attention network for evidential document-level event factuality identification
20
作者 Zhong QIAN Peifeng LI +1 位作者 Qiaoming ZHU Guodong ZHOU 《Frontiers of Computer Science》 2025年第6期29-43,共15页
Evidential Document-level Event Factuality Identification(EvDEFI)aims to predict the factual nature of an event and extract evidential sentences from the document precisely.Previous work usually limited to only predic... Evidential Document-level Event Factuality Identification(EvDEFI)aims to predict the factual nature of an event and extract evidential sentences from the document precisely.Previous work usually limited to only predicting the factuality of an event with respect to a document,and neglected the interpretability of the task.As a more fine-grained and interpretable task,EvDEFI is still in the early stage.The existing model only used shallow similarity calculation to extract evidences,and employed simple attentions without lexical features,which is quite coarse-grained.Therefore,we propose a novel EvDEFI model named Heterogeneous and Extractive Graph Attention Network(HEGAT),which can update representations of events and sentences by multi-view graph attentions based on tokens and various lexical features from both local and global levels.Experiments on EB-DEF-v2 corpus demonstrate that HEGAT model is superior to several competitive baselines and can validate the interpretability of the task. 展开更多
关键词 evidential document-level event factuality heterogeneous graph network multi-view attentions speculation and negation
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部