期刊文献+
共找到563篇文章
< 1 2 29 >
每页显示 20 50 100
Feature-Based Aggregation and Deep Reinforcement Learning:A Survey and Some New Implementations 被引量:15
1
作者 Dimitri P.Bertsekas 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期1-31,共31页
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinfor... In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement. 展开更多
关键词 REINFORCEMENT learning dynamic programming Markovian DECISION problems aggregation feature-based ARCHITECTURES policy ITERATION DEEP neural networks rollout algorithms
在线阅读 下载PDF
Multi-view feature fusion for rolling bearing fault diagnosis using random forest and autoencoder 被引量:8
2
作者 Sun Wenqing Deng Aidong +4 位作者 Deng Minqiang Zhu Jing Zhai Yimeng Cheng Qiang Liu Yang 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期302-309,共8页
To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the ... To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition (EMD).Then, the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder (AE) to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine (SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis. 展开更多
关键词 multi-view features feature fusion fault diagnosis rolling bearing machine learning
在线阅读 下载PDF
Feature Fusion Multi-View Hashing Based on Random Kernel Canonical Correlation Analysis 被引量:2
3
作者 Junshan Tan Rong Duan +2 位作者 Jiaohua Qin Xuyu Xiang Yun Tan 《Computers, Materials & Continua》 SCIE EI 2020年第5期675-689,共15页
Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information mor... Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods. 展开更多
关键词 HASHING multi-view data random kernel canonical correlation analysis feature fusion deep learning
在线阅读 下载PDF
DMHFR:Decoder with Multi-Head Feature Receptors for Tract Image Segmentation
4
作者 Jianuo Huang Bohan Lai +2 位作者 Weiye Qiu Caixu Xu Jie He 《Computers, Materials & Continua》 2025年第3期4841-4862,共22页
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ... The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively. 展开更多
关键词 Medical image segmentation feature exploration feature aggregation deep learning multi-head feature receptor
在线阅读 下载PDF
Implicit Feature Contrastive Learning for Few-Shot Object Detection
5
作者 Gang Li Zheng Zhou +6 位作者 Yang Zhang Chuanyun Xu Zihan Ruan Pengfei Lv Ru Wang Xinyu Fan Wei Tan 《Computers, Materials & Continua》 2025年第7期1615-1632,共18页
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli... Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD. 展开更多
关键词 Few-shot learning object detection implicit contrastive learning feature mixing feature aggregation
在线阅读 下载PDF
Full Perception Head:Bridging the Gap Between Local and Global Features
6
作者 Jie Hua Zhongyuan Wang +3 位作者 Xin Tian Qin Zou Jinsheng Xiao Jiayi Ma 《IEEE/CAA Journal of Automatica Sinica》 2025年第7期1391-1406,共16页
Object detection is a fundamental task in computer vision that involves identifying and localizing objects within an image.Local features extracted by convolutions,etc.,capture finegrained details such as edges and te... Object detection is a fundamental task in computer vision that involves identifying and localizing objects within an image.Local features extracted by convolutions,etc.,capture finegrained details such as edges and textures,while global features extracted by full connection layers,etc.,represent the overall structure and long-range relationships within the image.These features are crucial for accurate object detection,yet most existing methods focus on aggregating local and global features,often overlooking the importance of medium-range dependencies.To address this gap,we propose a novel full perception module(FPModule),a simple yet effective feature extraction module designed to simultaneously capture local details,medium-range dependencies,and long-range dependencies.Building on this,we construct a full perception head(FP-Head)by cascading multiple FP-Modules,enabling the prediction layer to leverage the most informative features.Experimental results in the MS COCO dataset demonstrate that our approach significantly enhances object recognition and localization,achieving 2.7−5.7 APval gains when integrated into standard object detectors.Notably,the FP-Module is a universal solution that can be seamlessly incorporated into existing detectors to boost performance.The code will be released at https://github.com/Idcogroup/FP-Head. 展开更多
关键词 feature aggregation full perception module medium-range dependencies object detection
在线阅读 下载PDF
MSL-Net:a lightweight apple leaf disease detection model based on multi-scale feature fusion
7
作者 YANG Kangyi YAN Chunman 《Optoelectronics Letters》 2025年第12期745-752,共8页
Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstl... Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstly,a multiplexed aggregated feature extraction network is proposed using residual bottleneck block(RES-Bottleneck)and middle partial-convolution(MP-Conv)to capture multi-scale spatial features and enhance focus on disease features for better differentiation between disease targets and background information.Secondly,a lightweight feature fusion network is designed using scale-fuse concatenation(SF-Cat)and triple-scale sequence feature fusion(TSSF)module to merge multi-scale feature maps comprehensively.Depthwise convolution(DWConv)and GhostNet lighten the network,while the cross stage partial bottleneck with 3 convolutions ghost-normalization attention module(C3-GN)reduces missed detections by suppressing irrelevant background information.Finally,soft non-maximum suppression(Soft-NMS)is used in the post-processing stage to improve the problem of misdetection of dense disease sites.The results show that the MSL-Net improves mean average precision at intersection over union of 0.5(mAP@0.5)by 2.0%over the baseline you only look once version 5s(YOLOv5s)and reduces parameters by 44%,reducing computation by 27%,outperforming other state-of-the-art(SOTA)models overall.This method also shows excellent performance compared to the latest research. 展开更多
关键词 enhance focus disease features background i multi scale feature fusion apple leaf disease spots residual bottleneck block res bottleneck multiplexed aggregated feature extraction network lightweight network apple leaf disease detection
原文传递
Enhancing Classroom Behavior Recognition with Lightweight Multi-Scale Feature Fusion
8
作者 Chuanchuan Wang Ahmad Sufril Azlan Mohamed +3 位作者 Xiao Yang Hao Zhang Xiang Li Mohd Halim Bin Mohd Noor 《Computers, Materials & Continua》 2025年第10期855-874,共20页
Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for ... Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors. 展开更多
关键词 Classroom action recognition YOLO-FR feature pyramid shared convolutional rep ghost cross stage partial efficient layer aggregation network(RGCSPELAN)
在线阅读 下载PDF
Multi-Index Image Retrieval Hash Algorithm Based on Multi-View Feature Coding
9
作者 Rong Duan Junshan Tan +3 位作者 Jiaohua Qin Xuyu Xiang Yun Tan N.eal NXiong 《Computers, Materials & Continua》 SCIE EI 2020年第12期2335-2350,共16页
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr... In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance. 展开更多
关键词 HASHING multi-view feature large-scale image retrieval feature coding feature matching
在线阅读 下载PDF
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space 被引量:7
10
作者 Yahui Liu Bin Tian +2 位作者 Yisheng Lv Lingxi Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期231-239,共9页
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT. 展开更多
关键词 Content-based Transformer deep learning feature aggregator local attention point cloud classification
在线阅读 下载PDF
ST-SIGMA:Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting 被引量:6
11
作者 Yang Fang Bei Luo +3 位作者 Ting Zhao Dong He Bingbing Jiang Qilie Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期744-757,共14页
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges... Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios. 展开更多
关键词 feature fusion graph interaction hierarchical aggregation scene perception scene semantics trajectory forecasting
在线阅读 下载PDF
MIA-UNet:Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation 被引量:2
12
作者 Linfang Yu Zhen Qin +1 位作者 Yi Ding Zhiguang Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期805-828,共24页
As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus ... As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus photography equipment is connected to the cloud platform through the IoT,so as to realize the realtime uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence.At the same time,important security and privacy issues have emerged.The data uploaded to the cloud platform involves more personal attributes,health status and medical application data of patients.Once leaked,abused or improperly disclosed,personal information security will be violated.Therefore,it is important to address the security and privacy issues of massive medical and healthcare equipment connecting to the infrastructure of IoT healthcare and health systems.To meet this challenge,we propose MIA-UNet,a multi-scale iterative aggregation U-network,which aims to achieve accurate and efficient retinal vessel segmentation for ophthalmic auxiliary diagnosis while ensuring that the network has low computational complexity to adapt to mobile terminals.In this way,users do not need to upload the data to the cloud platform,and can analyze and process the fundus images on their own mobile terminals,thus eliminating the leakage of personal information.Specifically,the interconnection between encoder and decoder,as well as the internal connection between decoder subnetworks in classic U-Net are redefined and redesigned.Furthermore,we propose a hybrid loss function to smooth the gradient and deal with the imbalance between foreground and background.Compared with the UNet,the segmentation performance of the proposed network is significantly improved on the premise that the number of parameters is only increased by 2%.When applied to three publicly available datasets:DRIVE,STARE and CHASE DB1,the proposed network achieves the accuracy/F1-score of 96.33%/84.34%,97.12%/83.17%and 97.06%/84.10%,respectively.The experimental results show that the MIA-UNet is superior to the state-of-the-art methods. 展开更多
关键词 Retinal vessel segmentation security and privacy redesigned skip connection feature maps aggregation hybrid loss function
在线阅读 下载PDF
3D Surface Reconstruction of Coarse Aggregate Particles from Occlusion-Free Multi-View Images
13
作者 GAO Rong SUN Zhaoyun +5 位作者 GUO Jianxing LI Wei YANG Ming HAO Xueli YAO Bobin WANG Huifeng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第4期301-314,共14页
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr... Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency. 展开更多
关键词 3D shape reconstruction multi-view imaging coarse aggregate particles shape from Silhouettes multi-camera calibration
原文传递
Modelling the temporal-varied nonlinear velocity profile of debris flow using a stratification aggregation algorithm in 3D-HBP-SPH framework
14
作者 HAN Zheng XIE Wendu +5 位作者 ZENG Chuicheng LI Yange CHEN Guangqi CHEN Ningsheng HU Guisheng WANG Weidong 《Journal of Mountain Science》 SCIE CSCD 2024年第12期3945-3960,共16页
Estimation of velocity profile within mud depth is a long-standing and essential problem in debris flow dynamics.Until now,various velocity profiles have been proposed based on the fitting analysis of experimental mea... Estimation of velocity profile within mud depth is a long-standing and essential problem in debris flow dynamics.Until now,various velocity profiles have been proposed based on the fitting analysis of experimental measurements,but these are often limited by the observation conditions,such as the number of configured sensors.Therefore,the resulting linear velocity profiles usually exhibit limitations in reproducing the temporal-varied and nonlinear behavior during the debris flow process.In this study,we present a novel approach to explore the debris flow velocity profile in detail upon our previous 3D-HBPSPH numerical model,i.e.,the three-dimensional Smoothed Particle Hydrodynamic model incorporating the Herschel-Bulkley-Papanastasiou rheology.Specifically,we propose a stratification aggregation algorithm for interpreting the details of SPH particles,which enables the recording of temporal velocities of debris flow at different mud depths.To analyze the velocity profile,we introduce a logarithmic-based nonlinear model with two key parameters,that a controlling the shape of velocity profile and b concerning its temporal evolution.We verify the proposed velocity profile and explore its sensitivity using 34 sets of velocity data from three individual flume experiments in previous literature.Our results demonstrate that the proposed temporalvaried nonlinear velocity profile outperforms the previous linear profiles. 展开更多
关键词 Debris flow Velocity profile Temporal varied feature NONLINEAR Stratification aggregation algorithm
原文传递
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
15
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 Load aggregation Regional large-scale Online recognition feature extraction method
在线阅读 下载PDF
Supervised Feature Learning for Offline Writer Identification Using VLAD and Double Power Normalization
16
作者 Dawei Liang Meng Wu Yan Hu 《Computers, Materials & Continua》 SCIE EI 2023年第7期279-293,共15页
As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quick... As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness. 展开更多
关键词 Writer identification power normalization vector of locally aggregated descriptors feature extraction
在线阅读 下载PDF
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
17
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
基于融合降噪先验与多尺度特征聚合的微地震震源定位方法
18
作者 黄建平 王秋阳 +5 位作者 李媛媛 黎国龙 路依霖 李三福 段文胜 雷刚林 《中国石油大学学报(自然科学版)》 北大核心 2026年第1期65-75,共11页
随着地震勘探采集数据量的激增,传统微地震定位方法难以满足当前水力压裂实时定位的需求且在采集过程中受环境噪声干扰,导致信噪比较低,影响震源定位精度。为此,提出一种基于深度学习的自监督-监督混合学习方法,首先采用卷积降噪自编码... 随着地震勘探采集数据量的激增,传统微地震定位方法难以满足当前水力压裂实时定位的需求且在采集过程中受环境噪声干扰,导致信噪比较低,影响震源定位精度。为此,提出一种基于深度学习的自监督-监督混合学习方法,首先采用卷积降噪自编码器(CDAE)进行自监督预训练,在去噪的同时学习数据中的波形特征;随后将CDAE的编码器部分作为特征提取模块,与全卷积定位模块级联,构建联合定位模型;最后利用少量标签数据微调网络,实现从含噪的微地震数据到震源空间分布的非线性映射。通过线性模型和Marmousi-2模型进行试验测试并与U-Net等网络进行对比。结果表明,提出的联合定位网络在仅使用少量标签数据训练情况下,仍可实现高精度震源定位效果。 展开更多
关键词 微地震监测 降噪先验 特征聚合 震源定位 深度学习
在线阅读 下载PDF
蚕豆11S蛋白淀粉样纤维化聚集的结构表征及其功能特性研究
19
作者 陈慧 周梦园 +5 位作者 许喆 林学镁 赵文忠 许志豪 丁笑琦 丁玉庭 《食品与发酵工业》 北大核心 2026年第1期277-283,共7页
食源性蛋白淀粉样纤维化聚集具有独特的结构特性,蚕豆11S蛋白(fava bean 11S protein,FP)作为一种可持续蛋白资源,表现出巨大的潜力。该研究探究了蚕豆11S蛋白淀粉样纤维化聚集(fibrotic aggregation of 11S protein in fava bean,FPF)... 食源性蛋白淀粉样纤维化聚集具有独特的结构特性,蚕豆11S蛋白(fava bean 11S protein,FP)作为一种可持续蛋白资源,表现出巨大的潜力。该研究探究了蚕豆11S蛋白淀粉样纤维化聚集(fibrotic aggregation of 11S protein in fava bean,FPF)在形成过程中的动态演变,包括其结构表征和功能特性。6 g/100 mL的FP通过酸热处理(pH 2,85℃)不同时间(0~24 h)后得到FPF。处理后的样品通过硫黄素T、荧光、二酪氨酸、透射电子显微镜、傅里叶红外光谱等进行结构表征,结果表明FP先在酸热过程中水解成多肽,再自组装成富含β-折叠结构的FPF(由0 h的34.44%增加到24 h的45.89%)。通过起泡性、乳化性和凝胶特性等对FPF功能特性进行表征,与FP相比,反应24 h后的FPF具有更好的起泡性、乳化性和凝胶特性。此外,FPF在体外细胞实验中没有表现出细胞毒性。研究结果为FPF的形成规律提供了理论支撑。 展开更多
关键词 蚕豆蛋白 11S蛋白 淀粉样纤维化聚集 结构特征 功能特性
在线阅读 下载PDF
频域空间信息驱动的特征聚合跨模态行人重识别方法
20
作者 金静 朱传斌 翟凤文 《计算机应用研究》 北大核心 2026年第1期298-304,共7页
跨模态行人重识别旨在匹配可见光与红外不同模态下的行人图像,该任务的核心挑战是缓解可见光与红外模态间差异并提取具有鉴别力的共享特征。然而,现有方法在最小化模态间差异和提取模态共享特征过程中,未能充分利用数据增强后的模态信... 跨模态行人重识别旨在匹配可见光与红外不同模态下的行人图像,该任务的核心挑战是缓解可见光与红外模态间差异并提取具有鉴别力的共享特征。然而,现有方法在最小化模态间差异和提取模态共享特征过程中,未能充分利用数据增强后的模态信息且忽略了不同尺度特征语义关联性,提出一种基于频域空间信息的特征聚合(FDSIFA)网络。首先,通过设计的多分支频域空间感知模块(MFSPM),对不同模态的增强图像和原始图像充分提取模态特定信息,同时在频域和空间维度上挖掘跨模态特征的一致性,有效减小了模态间的差异;其次,设计了多阶段特征聚合模块(MFAM),自适应聚合不同尺度的特征,挖掘低层次特征与高层次特征之间的语义关联,提升特征的语义表达能力和判别力。该网络在SYSU-MM01数据集的全搜索模式下,rank-1和mAP分别达到了75.09%和71.35%,优于对比方法,实验结果验证了所提方法的有效性。 展开更多
关键词 跨模态 行人重识别 数据增强 频域空间信息 特征聚合
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部