期刊文献+
共找到402篇文章
< 1 2 21 >
每页显示 20 50 100
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
1
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing multi-view learning Chemical-induced transcriptional profile Knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
CoLM^(2)S:Contrastive self‐supervised learning on attributed multiplex graph network with multi‐scale information
2
作者 Beibei Han Yingmei Wei +1 位作者 Qingyong Wang Shanshan Wan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1464-1479,共16页
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t... Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines. 展开更多
关键词 attributed multiplex graph network contrastive self‐supervised learning graph representation learning multiscale information
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
3
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
Cross-Domain Graph Anomaly Detection via Graph Transfer and Graph Decouple
4
作者 Changqin Huang Xinxing Shi +4 位作者 Chengling Gao Qintai Hu Xiaodi Huang Qionghao Huang Ali Anaissi 《CAAI Transactions on Intelligence Technology》 2025年第4期1089-1103,共15页
Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or c... Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or common based on their presence in both the source and target graphs.However,existing models often fail to fully explore domain-unique knowledge of the target graph for detecting unique anomalies.Additionally,they tend to focus solely on node-level differences,overlooking structural-level differences that provide complementary information for common anomaly detection.To address these issues,we propose a novel method,Synthetic Graph Anomaly Detection via Graph Transfer and Graph Decouple(GTGD),which effectively detects common and unique anomalies in the target graph.Specifically,our approach ensures deeper learning of domain-unique knowledge by decoupling the reconstruction graphs of common and unique features.Moreover,we simulta-neously consider node-level and structural-level differences by transferring node and edge information from the source graph to the target graph,enabling comprehensive domain-common knowledge representation.Anomalies are detected using both common and unique features,with their synthetic score serving as the final result.Extensive experiments demonstrate the effectiveness of our approach,improving an average performance by 12.6%on the AUC-PR compared to state-of-the-art methods. 展开更多
关键词 anomaly detection attributed graphs domain adaptation graph neural networks
在线阅读 下载PDF
Graph Similarity Learning Based on Learnable Augmentation and Multi-Level Contrastive Learning
5
作者 Jian Feng Yifan Guo Cailing Du 《Computers, Materials & Continua》 2025年第3期5135-5151,共17页
Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph aug... Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance. 展开更多
关键词 graph similarity learning contrastive learning attributes STRUCTURE
在线阅读 下载PDF
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
6
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
Detecting and Untangling Composite Commits via Attributed Graph Modeling
7
作者 Sheng-Bin Xu Si-Yu Chen +1 位作者 Yuan Yao Feng Xu 《Journal of Computer Science & Technology》 2025年第1期119-137,共19页
During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to im... During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to improve the maintainability and understandability of software.Our approach is built upon the observation that both the textual content of code statements and the dependencies between code statements are helpful in comprehending the code commit.Based on this observation,we first construct an attributed graph for each commit,where code statements and various code dependencies are modeled as nodes and edges,respectively,and the textual bodies of code statements are maintained as node attributes.Based on the attributed graph,we propose graph-based learning algorithms that first detect whether the given commit is a composite commit,and then untangle the composite commit into atomic ones.We evaluate our approach on nine C#projects,and the results demonstrate the effectiveness and efficiency of our approach. 展开更多
关键词 composite commit commit untangling code dependency graph attributed graph
原文传递
Relational graph location network for multi-view image localization
8
作者 YANG Yukun LIU Xiangdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期460-468,共9页
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa... In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy. 展开更多
关键词 multi-view image localization graph construction heterogeneous graph graph neural network
在线阅读 下载PDF
Continuous Multiplicative Attribute Graph Model
9
作者 黄嘉烜 金小刚 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第1期87-91,共5页
Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such appro... Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph(MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively. 展开更多
关键词 multiplicative attribute graph model social network continuous attribute TP 181 A
原文传递
基于异构属性传播的网络用户画像方法 被引量:3
10
作者 李勇男 《情报理论与实践》 北大核心 2025年第1期160-167,共8页
[目的/意义]为解决现有基于在线评论的用户画像维度单一问题,提出一种基于异构属性传播的网络用户画像方法。[方法/过程]基于用户、电影和标签构建图模型,从基本属性、电影偏好、情感偏好以及评分行为多个维度对用户属性初始化,作为用... [目的/意义]为解决现有基于在线评论的用户画像维度单一问题,提出一种基于异构属性传播的网络用户画像方法。[方法/过程]基于用户、电影和标签构建图模型,从基本属性、电影偏好、情感偏好以及评分行为多个维度对用户属性初始化,作为用户节点属性,并通过迭代传播的方式不断更新用户属性。[结果/结论]实验结果表明,所提出的方法能够显著丰富用户画像维度,相比现有最优深度学习模型,均方误差由0.113减小到0.083。通过属性扩增及传播,本方法能够提供丰富且准确的用户画像能力。[局限]实验数据来源于电影评论,用户画像对象为电影评分用户,场景较为单一,缺少在其他领域的验证。 展开更多
关键词 异构属性传播 图模型 用户画像 用户属性提取
原文传递
共享和特定表示的多视图属性图聚类 被引量:3
11
作者 曹付元 陈晓惠 《软件学报》 北大核心 2025年第3期1254-1267,共14页
现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的... 现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的方式,先分别学习每个视图的共享表示与特定表示再进行融合,更细粒度地学习多视图的一致信息和互补信息,构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation,MSAGC).具体来说,首先通过多视图编码器获得每个视图的初级表示,进而获得每个视图的共享信息和特定信息;然后对齐视图共享信息来学习多视图的一致信息,联合视图特定信息来利用多视图的互补信息,通过差异性约束来处理冗余信息;之后训练多视图解码器重构图的拓扑结构和属性特征矩阵;最后,附加自监督聚类模块使得图表示的学习和聚类任务趋向一致.MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证. 展开更多
关键词 多视图属性图 共享信息 特定信息 聚类
在线阅读 下载PDF
基于专利多属性融合的企业技术竞争对手识别研究——以新能源汽车领域为例 被引量:1
12
作者 冉从敬 冯若静 李旺 《情报理论与实践》 北大核心 2025年第5期91-100,共10页
[目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文... [目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文本和IPC分类信息,生成文本特征向量和分类特征向量,并将其拼接为融合向量。其次,基于专利间的引文耦合与共被引关系构建专利引用网络,并采用变分图自编码器(VGAE)模型对融合向量与专利引用网络形成的专利信息网络进行图嵌入学习,得到各专利的低维嵌入表示。最后,整合企业所有专利的嵌入表示,形成企业向量,并计算企业间的相似度值和企业降维特征向量,结合企业专利数量、企业相似度和降维特征向量,绘制技术竞争气泡图,从而识别企业的技术竞争对手。[结果/结论]以比亚迪新能源汽车为例,最终识别出吉利汽车、奇瑞汽车等技术竞争对手,此方法为企业制定技术竞争策略提供了参考依据。[局限]未充分考虑时间因素对专利引用关系演变和技术发展趋势的影响,这是未来的改进方向之一。 展开更多
关键词 多属性融合 技术竞争对手 专利分析 企业相似度 变分图自编码器
原文传递
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
13
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
原文传递
基于自适应结构增强的对比协同多视图属性图聚类
14
作者 王静红 陈潇 +3 位作者 王熙照 王旭 杨宏博 王威 《模式识别与人工智能》 北大核心 2025年第9期809-819,共11页
目前多数聚类方法主要关注单视图数据,对于多视图聚类的研究相对不足,而现有的多视图聚类方法往往侧重于视图间的信息学习,忽略视图内信息的充分挖掘.对此,文中提出基于自适应结构增强的对比协同多视图属性图聚类(Contrastive Collabora... 目前多数聚类方法主要关注单视图数据,对于多视图聚类的研究相对不足,而现有的多视图聚类方法往往侧重于视图间的信息学习,忽略视图内信息的充分挖掘.对此,文中提出基于自适应结构增强的对比协同多视图属性图聚类(Contrastive Collaborative Multi-view Attribute Graph Clustering Based on Adaptive Structure Enhancement,ACCMVC).首先,设计自适应结构增强策略,结合节点重要性和节点特征复杂关系生成边权重,用于生成视图的新邻接矩阵,进而生成结构增强图.然后,将边权重引入邻域对比学习,对视图及其结构增强图使用视图内加强邻域对比学习,在多个视图间使用视图间加强邻域对比学习.最后,考虑到多视图中视图的重要性存在差别,引入注意力机制,计算每个视图的权重并进行融合.在数据集上的实验表明,ACCMVC的聚类性能较优. 展开更多
关键词 多视图学习 属性图聚类 图表示学习 对比学习 自监督聚类
在线阅读 下载PDF
基于价值评估的废旧产品拆卸序列与拆卸深度决策
15
作者 张华 殷俊鸿 +3 位作者 鄢威 马峰 江志刚 朱硕 《组合机床与自动化加工技术》 北大核心 2025年第1期143-149,共7页
为解决拆卸序列规划(disassembly sequence planning, DSP)中存在的复杂模型构建难题、组合爆炸以及拆解深度决策不合理等问题,提出了一种基于知识图谱属性图模块化的改进方法实现废旧产品拆卸信息的获取,并提出了一种基于剩余回收效益... 为解决拆卸序列规划(disassembly sequence planning, DSP)中存在的复杂模型构建难题、组合爆炸以及拆解深度决策不合理等问题,提出了一种基于知识图谱属性图模块化的改进方法实现废旧产品拆卸信息的获取,并提出了一种基于剩余回收效益评估的拆解序列与拆解深度综合决策方法。首先,通过分析废旧产品的拆卸特征以及产品内部零部件的信息和拆卸联接关系,构建支持拆解的模块化属性图模型;其次,采用组合赋权及改进的TOPSIS灰色关联分析法构建了零件回收综合评价模型的多属性决策模型,对产品综合内部零部件剩余回收效益进行排序;再次,提出了基于改进遗传-粒子群算法的完全拆解序列生成方法,并结合剩余回收效益值进行废旧产品零件的拆解深度决策。以废旧汽车动力电池包为例对上述模型和方法进行了验证,证明了该方法的可行性和高效性。 展开更多
关键词 废旧产品 知识图属性图模型 零件回收综合评价 拆卸序列优化 拆卸深度决策
在线阅读 下载PDF
基于二部联合网络的属性缺失图学习方法
16
作者 韩忠明 张舒群 +2 位作者 刘燕 胡启文 杨伟杰 《复杂系统与复杂性科学》 北大核心 2025年第2期55-63,共9页
针对图数据中普遍存在的节点属性缺失问题,提出了一种新型的属性缺失图学习框架。该框架通过重构二部联合网络,将节点属性映射为边信息,使属性补全与图节点分类任务能够在统一框架下协同进行,灵活处理连续型数据和离散型数据缺失。并基... 针对图数据中普遍存在的节点属性缺失问题,提出了一种新型的属性缺失图学习框架。该框架通过重构二部联合网络,将节点属性映射为边信息,使属性补全与图节点分类任务能够在统一框架下协同进行,灵活处理连续型数据和离散型数据缺失。并基于属性图的属性同质性和结构同质性,提出一种基于二部联合网络的属性缺失表示学习方法,引入边嵌入和注意力机制捕获二部联合网络中属性-属性与结构-属性之间的相关性,从而提升缺失属性学习。在4个基准图数据集上的实验表明该方法在属性补全任务和后续节点分类任务中均优于基线方法,验证了该方法有效性。 展开更多
关键词 图神经网络 属性补全 节点分类 二部图 网络拓扑
在线阅读 下载PDF
基于多语义关联与融合的视觉问答模型
17
作者 周浩 王超 +1 位作者 崔国恒 罗廷金 《计算机应用》 北大核心 2025年第3期739-745,共7页
弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的... 弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的作用。为解决上述问题,提出一种基于多语义关联与融合的VQA模型以建立问题与图像之间的语义联系。首先,基于场景图生成框架提取图像中的多种语义并把它们进行特征精炼后作为VQA模型的特征输入,从而充分挖掘图像场景中的信息;其次,为提高图像特征的语义价值,设计一个信息过滤器过滤图像特征中的噪声和冗余信息;最后,设计多层注意力融合和推理模块将多种图像语义分别与问题特征进行语义融合,以强化视觉图像重点区域与文本问题之间的语义关联。与BAN(Bilinear Attention Network)和CFR(Coarse-to-Fine Reasoning)模型的对比实验结果表明,所提模型在VQA2.0测试集上的准确率分别提高了2.9和0.4个百分点,在GQA测试集上的准确率分别提高了17.2和0.3个百分点。这表明所提模型能够更好地理解图像场景中的语义并回答组合式视觉问题。 展开更多
关键词 多语义特征融合 视觉问答 场景图 属性注意力 关系注意力
在线阅读 下载PDF
超越同质性假设的双通道属性图聚类
18
作者 安俊秀 柳源 杨林旺 《电信科学》 北大核心 2025年第1期111-124,共14页
属性图聚类的研究近些年取得了显著进步,但现有方法大多基于同质性假设,忽略了异质图的应用场景,导致在聚类过程中高频信息的丢失和聚类效果不佳。为解决此问题,提出了一种新颖的双通道属性图聚类方法(DCAGC)。该方法采用混合高斯模型... 属性图聚类的研究近些年取得了显著进步,但现有方法大多基于同质性假设,忽略了异质图的应用场景,导致在聚类过程中高频信息的丢失和聚类效果不佳。为解决此问题,提出了一种新颖的双通道属性图聚类方法(DCAGC)。该方法采用混合高斯模型预测节点连接的同质性,并基于这一预测构建同质和异质两种视图,以便从不同角度捕捉图中的低频和高频信息。同时,通过融合对比学习和聚类,实现了更精准的节点嵌入。与其他方法相比,DCAGC在处理异质图数据集时聚类效果显著,且具有较强的抗异常连接能力。 展开更多
关键词 属性图聚类 自监督学习 异质图学习
在线阅读 下载PDF
基于自适应图自编码器的离群点检测方法 被引量:1
19
作者 谭淇尹 于炯 陈子歆 《计算机科学》 北大核心 2025年第6期129-138,共10页
离群点检测(Outlier Detection)是通过识别数据集中不同于大多数样本的少量个体来获取数据的整体健康状态与异常信息。目前,在处理欧氏结构数据集时,大部分检测算法侧重于将数据视为独立的个体,却忽视了数据实例之间的相关性。这种信息... 离群点检测(Outlier Detection)是通过识别数据集中不同于大多数样本的少量个体来获取数据的整体健康状态与异常信息。目前,在处理欧氏结构数据集时,大部分检测算法侧重于将数据视为独立的个体,却忽视了数据实例之间的相关性。这种信息偏向性导致了一些可能位于正常数据区域内的潜在的离群值难以被有效检测出来。针对上述问题,提出了一种基于自适应邻居的图自动编码器的深度联合表示学习算法ANGAE(Adaptive Neighbor Graph Autoencoder)。该算法从图生成的角度构建图来捕捉数据点之间的关系,并利用结构和属性自动编码器学习数据的潜在表示。ANGAE引入了自适应邻居构图机制,以动态更新图结构,确保在模型训练过程中对不准确的图结构进行调整和改进。通过融合结构嵌入和属性嵌入,ANGAE实现了网络结构和节点属性之间的有效交互。实验结果表明,所提出的方法在11个数据集上表现优异,在保持高精度的同时展现了很好的鲁棒性,其有效性得到了充分证明。 展开更多
关键词 离群点检测 深度学习 图卷积网络 图表示学习 属性网络
在线阅读 下载PDF
基于属性异质图的多目标对抗跨领域推荐 被引量:1
20
作者 袁杰 朱焱 《计算机与现代化》 2025年第1期37-43,共7页
跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,... 跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,无法自然地扩展为多领域的推荐。本文提出一种基于属性异质图的多目标对抗跨领域推荐(Multitarget Adversarial Cross-domain Recommendation based on Attributed Heterogeneous Graph,MAAH)方法,利用属性异质图结构表征用户与项目,捕获领域间用户行为的同质性与异质性;结合对抗学习进一步融合与区分用户偏好,使每个领域的推荐效果同时提升,实现多目标的跨领域推荐。在公开的数据集上进行实验,结果表明该方法缓解了数据稀疏,可以进一步解决冷启动问题。 展开更多
关键词 推荐系统 跨领域 属性异质图 图嵌入 对抗学习
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部