Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte...Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.展开更多
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t...Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.展开更多
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or c...Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or common based on their presence in both the source and target graphs.However,existing models often fail to fully explore domain-unique knowledge of the target graph for detecting unique anomalies.Additionally,they tend to focus solely on node-level differences,overlooking structural-level differences that provide complementary information for common anomaly detection.To address these issues,we propose a novel method,Synthetic Graph Anomaly Detection via Graph Transfer and Graph Decouple(GTGD),which effectively detects common and unique anomalies in the target graph.Specifically,our approach ensures deeper learning of domain-unique knowledge by decoupling the reconstruction graphs of common and unique features.Moreover,we simulta-neously consider node-level and structural-level differences by transferring node and edge information from the source graph to the target graph,enabling comprehensive domain-common knowledge representation.Anomalies are detected using both common and unique features,with their synthetic score serving as the final result.Extensive experiments demonstrate the effectiveness of our approach,improving an average performance by 12.6%on the AUC-PR compared to state-of-the-art methods.展开更多
Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph aug...Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance.展开更多
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s...Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).展开更多
During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to im...During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to improve the maintainability and understandability of software.Our approach is built upon the observation that both the textual content of code statements and the dependencies between code statements are helpful in comprehending the code commit.Based on this observation,we first construct an attributed graph for each commit,where code statements and various code dependencies are modeled as nodes and edges,respectively,and the textual bodies of code statements are maintained as node attributes.Based on the attributed graph,we propose graph-based learning algorithms that first detect whether the given commit is a composite commit,and then untangle the composite commit into atomic ones.We evaluate our approach on nine C#projects,and the results demonstrate the effectiveness and efficiency of our approach.展开更多
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa...In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.展开更多
Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such appro...Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph(MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively.展开更多
现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的...现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的方式,先分别学习每个视图的共享表示与特定表示再进行融合,更细粒度地学习多视图的一致信息和互补信息,构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation,MSAGC).具体来说,首先通过多视图编码器获得每个视图的初级表示,进而获得每个视图的共享信息和特定信息;然后对齐视图共享信息来学习多视图的一致信息,联合视图特定信息来利用多视图的互补信息,通过差异性约束来处理冗余信息;之后训练多视图解码器重构图的拓扑结构和属性特征矩阵;最后,附加自监督聚类模块使得图表示的学习和聚类任务趋向一致.MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证.展开更多
跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,...跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,无法自然地扩展为多领域的推荐。本文提出一种基于属性异质图的多目标对抗跨领域推荐(Multitarget Adversarial Cross-domain Recommendation based on Attributed Heterogeneous Graph,MAAH)方法,利用属性异质图结构表征用户与项目,捕获领域间用户行为的同质性与异质性;结合对抗学习进一步融合与区分用户偏好,使每个领域的推荐效果同时提升,实现多目标的跨领域推荐。在公开的数据集上进行实验,结果表明该方法缓解了数据稀疏,可以进一步解决冷启动问题。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.:62101087)the China Postdoctoral Science Foundation(Grant No.:2021MD703942)+2 种基金the Chongqing Postdoctoral Research Project Special Funding,China(Grant No.:2021XM2016)the Science Foundation of Chongqing Municipal Commission of Education,China(Grant No.:KJQN202100642)the Chongqing Natural Science Foundation,China(Grant No.:cstc2021jcyj-msxmX0834).
文摘Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
基金support by the National Natural Science Foundation of China(NSFC)under grant number 61873274.
文摘Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.
基金supported by the National Nature Science Foundation of China,Grant/Award Numbers:62337001,62037001“Pioneer”and“Leading Goose”R&D Program of Zhejiang,Grant/Award Number:2022C03106.
文摘Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or common based on their presence in both the source and target graphs.However,existing models often fail to fully explore domain-unique knowledge of the target graph for detecting unique anomalies.Additionally,they tend to focus solely on node-level differences,overlooking structural-level differences that provide complementary information for common anomaly detection.To address these issues,we propose a novel method,Synthetic Graph Anomaly Detection via Graph Transfer and Graph Decouple(GTGD),which effectively detects common and unique anomalies in the target graph.Specifically,our approach ensures deeper learning of domain-unique knowledge by decoupling the reconstruction graphs of common and unique features.Moreover,we simulta-neously consider node-level and structural-level differences by transferring node and edge information from the source graph to the target graph,enabling comprehensive domain-common knowledge representation.Anomalies are detected using both common and unique features,with their synthetic score serving as the final result.Extensive experiments demonstrate the effectiveness of our approach,improving an average performance by 12.6%on the AUC-PR compared to state-of-the-art methods.
文摘Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance.
基金supported by the National Key R&D Program of China(2023YFC3304600).
文摘Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).
基金supported by the National Natural Science Foundation of China under Grant No.62025202the Fundamental Research Funds for the Central Universities under Grant No.020214380102.
文摘During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to improve the maintainability and understandability of software.Our approach is built upon the observation that both the textual content of code statements and the dependencies between code statements are helpful in comprehending the code commit.Based on this observation,we first construct an attributed graph for each commit,where code statements and various code dependencies are modeled as nodes and edges,respectively,and the textual bodies of code statements are maintained as node attributes.Based on the attributed graph,we propose graph-based learning algorithms that first detect whether the given commit is a composite commit,and then untangle the composite commit into atomic ones.We evaluate our approach on nine C#projects,and the results demonstrate the effectiveness and efficiency of our approach.
文摘In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.
基金the National Natural Science Foundation of China(No.61379074)the Zhejiang Provincial Natural Science Foundation of China(No.LZ12F02003)
文摘Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph(MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively.
文摘现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的方式,先分别学习每个视图的共享表示与特定表示再进行融合,更细粒度地学习多视图的一致信息和互补信息,构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation,MSAGC).具体来说,首先通过多视图编码器获得每个视图的初级表示,进而获得每个视图的共享信息和特定信息;然后对齐视图共享信息来学习多视图的一致信息,联合视图特定信息来利用多视图的互补信息,通过差异性约束来处理冗余信息;之后训练多视图解码器重构图的拓扑结构和属性特征矩阵;最后,附加自监督聚类模块使得图表示的学习和聚类任务趋向一致.MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证.
文摘跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,无法自然地扩展为多领域的推荐。本文提出一种基于属性异质图的多目标对抗跨领域推荐(Multitarget Adversarial Cross-domain Recommendation based on Attributed Heterogeneous Graph,MAAH)方法,利用属性异质图结构表征用户与项目,捕获领域间用户行为的同质性与异质性;结合对抗学习进一步融合与区分用户偏好,使每个领域的推荐效果同时提升,实现多目标的跨领域推荐。在公开的数据集上进行实验,结果表明该方法缓解了数据稀疏,可以进一步解决冷启动问题。