期刊文献+
共找到412篇文章
< 1 2 21 >
每页显示 20 50 100
Overlapping community detection on attributed graphs via neutrosophic C-means
1
作者 Yuhan Jia Leyan Ouyang +1 位作者 Qiqi Wang Huijia Li 《Chinese Physics B》 2025年第12期569-580,共12页
Detecting overlapping communities in attributed networks remains a significant challenge due to the complexity of jointly modeling topological structure and node attributes,the unknown number of communities,and the ne... Detecting overlapping communities in attributed networks remains a significant challenge due to the complexity of jointly modeling topological structure and node attributes,the unknown number of communities,and the need to capture nodes with multiple memberships.To address these issues,we propose a novel framework named density peaks clustering with neutrosophic C-means.First,we construct a consensus embedding by aligning structure-based and attribute-based representations using spectral decomposition and canonical correlation analysis.Then,an improved density peaks algorithm automatically estimates the number of communities and selects initial cluster centers based on a newly designed cluster strength metric.Finally,a neutrosophic C-means algorithm refines the community assignments,modeling uncertainty and overlap explicitly.Experimental results on synthetic and real-world networks demonstrate that the proposed method achieves superior performance in terms of detection accuracy,stability,and its ability to identify overlapping structures. 展开更多
关键词 attributed graphs overlapping communities neutrosophic C-means density peaks
原文传递
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
2
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing multi-view learning Chemical-induced transcriptional profile Knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
CoLM^(2)S:Contrastive self‐supervised learning on attributed multiplex graph network with multi‐scale information
3
作者 Beibei Han Yingmei Wei +1 位作者 Qingyong Wang Shanshan Wan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1464-1479,共16页
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t... Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines. 展开更多
关键词 attributed multiplex graph network contrastive self‐supervised learning graph representation learning multiscale information
在线阅读 下载PDF
Relational graph location network for multi-view image localization
4
作者 YANG Yukun LIU Xiangdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期460-468,共9页
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa... In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy. 展开更多
关键词 multi-view image localization graph construction heterogeneous graph graph neural network
在线阅读 下载PDF
Continuous Multiplicative Attribute Graph Model
5
作者 黄嘉烜 金小刚 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第1期87-91,共5页
Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such appro... Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph(MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively. 展开更多
关键词 multiplicative attribute graph model social network continuous attribute TP 181 A
原文传递
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data 被引量:1
6
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph
7
作者 Jian He Yanling Wu +4 位作者 Linxi Yuan Jiangguo Qiu Menglong Li Xuemei Pu Yanzhi Guo 《Journal of Pharmaceutical Analysis》 2025年第8期1902-1915,共14页
Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes ... Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes are present in the training model),without special attention to the unseen DGIs(both drugs and genes are absent in the training model).In view of this,this study,for the first time,proposed an inductive learning-based model for the precise identification of unseen DGIs.In our study,by integrating disease nodes to avoid data sparsity,a multi-relational drug-disease-gene(DDG)graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions.Following the extraction of graph features by utilizing graph embedding algorithms,our next step was the retrieval of the attributes of individual gene and drug nodes.In this way,a hybrid feature characterization was represented by integrating graph features and node attributes.Machine learning(ML)models were built,enabling the fulfillment of transductive predictions of unknown DGIs.To realize inductive learning,this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights,enabling inductive predictions for the unseen DGIs.Consequently,the final model was superior to existing models,with significant improvement in predicting both external unknown and unseen DGIs.The practical feasibility of our model was further confirmed through case study and molecular docking.In summary,this study establishes an efficient data-driven approach through the proposed modeling,suggesting its value as a promising tool for accelerating drug discovery and repurposing. 展开更多
关键词 Drug-gene interactions Inductive learning Multi-relational drug-disease-gene graph graph embedding Node attributes Machine learning
暂未订购
Cross-Domain Graph Anomaly Detection via Graph Transfer and Graph Decouple
8
作者 Changqin Huang Xinxing Shi +4 位作者 Chengling Gao Qintai Hu Xiaodi Huang Qionghao Huang Ali Anaissi 《CAAI Transactions on Intelligence Technology》 2025年第4期1089-1103,共15页
Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or c... Cross-domain graph anomaly detection(CD-GAD)is a promising task that leverages knowledge from a labelled source graph to guide anomaly detection on an unlabelled target graph.CD-GAD classifies anomalies as unique or common based on their presence in both the source and target graphs.However,existing models often fail to fully explore domain-unique knowledge of the target graph for detecting unique anomalies.Additionally,they tend to focus solely on node-level differences,overlooking structural-level differences that provide complementary information for common anomaly detection.To address these issues,we propose a novel method,Synthetic Graph Anomaly Detection via Graph Transfer and Graph Decouple(GTGD),which effectively detects common and unique anomalies in the target graph.Specifically,our approach ensures deeper learning of domain-unique knowledge by decoupling the reconstruction graphs of common and unique features.Moreover,we simulta-neously consider node-level and structural-level differences by transferring node and edge information from the source graph to the target graph,enabling comprehensive domain-common knowledge representation.Anomalies are detected using both common and unique features,with their synthetic score serving as the final result.Extensive experiments demonstrate the effectiveness of our approach,improving an average performance by 12.6%on the AUC-PR compared to state-of-the-art methods. 展开更多
关键词 anomaly detection attributed graphs domain adaptation graph neural networks
在线阅读 下载PDF
Graph Similarity Learning Based on Learnable Augmentation and Multi-Level Contrastive Learning
9
作者 Jian Feng Yifan Guo Cailing Du 《Computers, Materials & Continua》 2025年第3期5135-5151,共17页
Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph aug... Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance. 展开更多
关键词 graph similarity learning contrastive learning attributes STRUCTURE
在线阅读 下载PDF
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
10
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
基于语义图增强注意力网络的症状属性分类方法
11
作者 贾鹤鸣 李伟 +1 位作者 李波 张志东 《计算机应用研究》 北大核心 2026年第1期53-59,共7页
医疗对话中的症状属性分类是实现自动诊断系统的关键任务之一,旨在识别对话文本中描述的症状所对应的属性类别。然而,现有方法在处理长文本对话时普遍存在上下文建模能力不足、语义依赖捕捉不充分等问题,导致整体分类性能受限,尤其在少... 医疗对话中的症状属性分类是实现自动诊断系统的关键任务之一,旨在识别对话文本中描述的症状所对应的属性类别。然而,现有方法在处理长文本对话时普遍存在上下文建模能力不足、语义依赖捕捉不充分等问题,导致整体分类性能受限,尤其在少数类样本上的表现欠佳。针对上述挑战,提出一种基于语义图增强注意力网络的症状属性分类方法。该方法通过构建症状关联的文本分割方法、融合编码策略以及基于依存树的关系图注意力网络,在多个层次上增强模型对症状上下文信息的建模能力。实验结果表明,所提方法在CHIP-MDCFNPC数据集上取得了72.13%的F 1(+1.76%)和77.94%的宏平均F 1值(+1.77%)。所提方法能够显著提升长文本医疗对话中症状属性分类的效果,尤其在少数类样本上的表现更为突出,为构建高效可靠的自动诊断系统提供了有益借鉴。 展开更多
关键词 症状属性分类 文本分割 关系图注意力机制
在线阅读 下载PDF
高噪声日志攻击源识别方法研究及实现
12
作者 高原 汪辰瑞 《网络安全与数据治理》 2026年第1期14-19,共6页
随着信息系统规模的扩大与网络攻击手段的多样化,网络安全态势感知平台及其他运营保障平台在面对海量异构日志时,普遍存在告警疲劳、误报率高、攻击溯源困难等问题。针对高噪声日志环境下的攻击源识别与威胁溯源难题,提出一种高噪声日... 随着信息系统规模的扩大与网络攻击手段的多样化,网络安全态势感知平台及其他运营保障平台在面对海量异构日志时,普遍存在告警疲劳、误报率高、攻击溯源困难等问题。针对高噪声日志环境下的攻击源识别与威胁溯源难题,提出一种高噪声日志攻击源识别方法,该方法使用了基于多维规则的攻击源IP动态评分模型,实现攻击源威胁等级的动态评估与更新。同时,系统利用知识图谱完成攻击链重构与可视化分析,提升安全事件的可解释性与处置效率。实验结果表明,该方法在水利行业真实日志数据上实现了99.6%的日志浓缩率,误报率降低至8.3%,显著提升安全运营效率与响应能力。研究成果为行业级网络安全智能化运营提供了可行技术路径。 展开更多
关键词 网络安全 日志降噪 动态评分模型 知识图谱 威胁溯源
在线阅读 下载PDF
Detecting and Untangling Composite Commits via Attributed Graph Modeling
13
作者 Sheng-Bin Xu Si-Yu Chen +1 位作者 Yuan Yao Feng Xu 《Journal of Computer Science & Technology》 2025年第1期119-137,共19页
During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to im... During software development,developers tend to tangle multiple concerns into a single commit,resulting in many composite commits.This paper studies the problem of detecting and untangling composite commits,so as to improve the maintainability and understandability of software.Our approach is built upon the observation that both the textual content of code statements and the dependencies between code statements are helpful in comprehending the code commit.Based on this observation,we first construct an attributed graph for each commit,where code statements and various code dependencies are modeled as nodes and edges,respectively,and the textual bodies of code statements are maintained as node attributes.Based on the attributed graph,we propose graph-based learning algorithms that first detect whether the given commit is a composite commit,and then untangle the composite commit into atomic ones.We evaluate our approach on nine C#projects,and the results demonstrate the effectiveness and efficiency of our approach. 展开更多
关键词 composite commit commit untangling code dependency graph attributed graph
原文传递
Semantic Relation Annotation for Biomedical Text Mining Based on Recursive Directed Graph 被引量:2
14
作者 CHEN Bo Lü Chen +1 位作者 WEI Xiaomei JI Donghong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第2期141-145,共5页
In this paper we propose a novel model "recursive directed graph" based on feature structure, and apply it to represent the semantic relations of postpositive attributive structures in biomedical texts. The usages o... In this paper we propose a novel model "recursive directed graph" based on feature structure, and apply it to represent the semantic relations of postpositive attributive structures in biomedical texts. The usages of postpositive attributive are complex and variable, especially three categories: present participle phrase, past participle phrase, and preposition phrase as postpositire attributive, which always bring the difficulties of automatic parsing. We summarize these categories and annotate the semantic information. Compared with dependency structure, feature structure, being recursive directed graph, enhances semantic information extraction in biomedical field. The annotation results show that recursive directed graph is more suitable to extract complex semantic relations for biomedical text mining. 展开更多
关键词 biomedical text mining semantic annotation recursive directed graph postpositive attribute
原文传递
Design Pattern Mining Using Graph Matching 被引量:1
15
作者 LIQing-hua ZHANGZhi-xiang BENKe-rong 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第4期444-448,共5页
The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism a... The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each subgraph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs. Key words design pattern mining - attributed relational graph - subgraph isomorphism CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60273075) and the Science Foundation of Naval University of Engineering (HGDJJ03019)Biography: LI Qing-hua (1940-), male, Professor, research direction: parallel computing. 展开更多
关键词 design pattern mining attributed relational graph subgraph isomorphism
在线阅读 下载PDF
Towards automated software model checking using graph transformation systems and Bogor
16
作者 Vahid RAFE Adel T.RAHMANI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1093-1105,共13页
Graph transformation systems have become a general formal modeling language to describe many models in software development process.Behavioral modeling of dynamic systems and model-to-model transformations are only a ... Graph transformation systems have become a general formal modeling language to describe many models in software development process.Behavioral modeling of dynamic systems and model-to-model transformations are only a few examples in which graphs have been used to software development.But even the perfect graph transformation system must be equipped with automated analysis capabilities to let users understand whether such a formal specification fulfills their requirements.In this paper,we present a new solution to verify graph transformation systems using the Bogor model checker.The attributed graph grammars(AGG)-like graph transformation systems are translated to Bandera intermediate representation(BIR),the input language of Bogor,and Bogor verifies the model against some interesting properties defined by combining linear temporal logic(LTL) and special-purpose graph rules.Experimental results are encouraging,showing that in most cases our solution improves existing approaches in terms of both performance and expressiveness. 展开更多
关键词 graph transformation VERIFICATION Bogor attributed graph grammars (AGG) Software model checking
原文传递
基于异构属性传播的网络用户画像方法 被引量:3
17
作者 李勇男 《情报理论与实践》 北大核心 2025年第1期160-167,共8页
[目的/意义]为解决现有基于在线评论的用户画像维度单一问题,提出一种基于异构属性传播的网络用户画像方法。[方法/过程]基于用户、电影和标签构建图模型,从基本属性、电影偏好、情感偏好以及评分行为多个维度对用户属性初始化,作为用... [目的/意义]为解决现有基于在线评论的用户画像维度单一问题,提出一种基于异构属性传播的网络用户画像方法。[方法/过程]基于用户、电影和标签构建图模型,从基本属性、电影偏好、情感偏好以及评分行为多个维度对用户属性初始化,作为用户节点属性,并通过迭代传播的方式不断更新用户属性。[结果/结论]实验结果表明,所提出的方法能够显著丰富用户画像维度,相比现有最优深度学习模型,均方误差由0.113减小到0.083。通过属性扩增及传播,本方法能够提供丰富且准确的用户画像能力。[局限]实验数据来源于电影评论,用户画像对象为电影评分用户,场景较为单一,缺少在其他领域的验证。 展开更多
关键词 异构属性传播 图模型 用户画像 用户属性提取
原文传递
共享和特定表示的多视图属性图聚类 被引量:3
18
作者 曹付元 陈晓惠 《软件学报》 北大核心 2025年第3期1254-1267,共14页
现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的... 现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的方式,先分别学习每个视图的共享表示与特定表示再进行融合,更细粒度地学习多视图的一致信息和互补信息,构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation,MSAGC).具体来说,首先通过多视图编码器获得每个视图的初级表示,进而获得每个视图的共享信息和特定信息;然后对齐视图共享信息来学习多视图的一致信息,联合视图特定信息来利用多视图的互补信息,通过差异性约束来处理冗余信息;之后训练多视图解码器重构图的拓扑结构和属性特征矩阵;最后,附加自监督聚类模块使得图表示的学习和聚类任务趋向一致.MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证. 展开更多
关键词 多视图属性图 共享信息 特定信息 聚类
在线阅读 下载PDF
基于专利多属性融合的企业技术竞争对手识别研究——以新能源汽车领域为例 被引量:1
19
作者 冉从敬 冯若静 李旺 《情报理论与实践》 北大核心 2025年第5期91-100,共10页
[目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文... [目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文本和IPC分类信息,生成文本特征向量和分类特征向量,并将其拼接为融合向量。其次,基于专利间的引文耦合与共被引关系构建专利引用网络,并采用变分图自编码器(VGAE)模型对融合向量与专利引用网络形成的专利信息网络进行图嵌入学习,得到各专利的低维嵌入表示。最后,整合企业所有专利的嵌入表示,形成企业向量,并计算企业间的相似度值和企业降维特征向量,结合企业专利数量、企业相似度和降维特征向量,绘制技术竞争气泡图,从而识别企业的技术竞争对手。[结果/结论]以比亚迪新能源汽车为例,最终识别出吉利汽车、奇瑞汽车等技术竞争对手,此方法为企业制定技术竞争策略提供了参考依据。[局限]未充分考虑时间因素对专利引用关系演变和技术发展趋势的影响,这是未来的改进方向之一。 展开更多
关键词 多属性融合 技术竞争对手 专利分析 企业相似度 变分图自编码器
原文传递
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
20
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
原文传递
上一页 1 2 21 下一页 到第
使用帮助 返回顶部