期刊文献+
共找到369,417篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images 被引量:1
1
作者 Yan Han Weibin Chen +1 位作者 Ali Asghar Heidari Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1198-1262,共65页
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem... Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms. 展开更多
关键词 COVID-19 Multilevel threshold image segmentation Kapur’s entropy multi-verse optimizer Meta-heuristic algorithm Bionic algorithm
在线阅读 下载PDF
Balancing Exploration–Exploitation of Multi-verse Optimizer for Parameter Extraction on Photovoltaic Models
2
作者 Yan Han Weibin Chen +2 位作者 Ali Asghar Heidari Huiling Chen Xin Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期1022-1054,共33页
Extracting photovoltaic(PV)model parameters based on the measured voltage and current information is crucial in the simulation and management of PV systems.To accurately and reliably extract the unknown parameters of ... Extracting photovoltaic(PV)model parameters based on the measured voltage and current information is crucial in the simulation and management of PV systems.To accurately and reliably extract the unknown parameters of different PV models,this paper proposes an improved multi-verse optimizer that integrates an iterative chaos map and the Nelder–Mead simplex method,INMVO.Quantitative experiments verified that the proposed INMVO fueled by both mechanisms has more affluent populations and a more reasonable balance between exploration and exploitation.Further,to verify the feasibility and competitiveness of the proposal,this paper employed INMVO to extract the unknown parameters on single-diode,double-diode,three-diode,and PV module four well-known PV models,and the high-performance techniques are selected for comparison.In addition,the Wilcoxon signed-rank and Friedman tests were employed to test the experimental results statistically.Various evaluation metrics,such as root means square error,relative error,absolute error,and statistical test,demonstrate that the proposed INMVO works effectively and accurately to extract the unknown parameters on different PV models compared to other techniques.In addition,the capability of INMVO to stably and accurately extract unknown parameters was also verified on three commercial PV modules under different irradiance and temperatures.In conclusion,the proposal in this paper can be implemented as an advanced and reliable tool for extracting the unknown parameters of different PV models.Note that the source code of INMVO is available at https://github.com/woniuzuioupao/INMVO. 展开更多
关键词 Photovoltaic models multi-verse optimizer Nelder-Mead simplex Iterative chaos map
在线阅读 下载PDF
Load Frequency Control of Multi-interconnected Renewable Energy Plants Using Multi-Verse Optimizer 被引量:1
3
作者 Hegazy Rezk Mohamed A.Mohamed +1 位作者 Ahmed A.Zaki Diab N.Kanagaraj 《Computer Systems Science & Engineering》 SCIE EI 2021年第5期219-231,共13页
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente... A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller. 展开更多
关键词 Load frequency control multi-verse optimization multi-area power system renewable energy sources
在线阅读 下载PDF
Path Planning of Quadrotors in a Dynamic Environment Using a Multicriteria Multi-Verse Optimizer
4
作者 Raja Jarray Mujahed Al-Dhaifallah +1 位作者 Hegazy Rezk Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第11期2159-2180,共22页
Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Opti... Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy. 展开更多
关键词 Quadrotors path planning dynamic obstacles multi-objective optimization global metaheuristics TOPSIS decision-making Friedman statistical tests
在线阅读 下载PDF
Optimized fiber allocation for enhanced impact resistance in composites through damage mode suppression
5
作者 Noha M.Hassan Zied Bahroun +2 位作者 Mahmoud I.Awad Rami As'ad El-Cheikh Amer Kaiss 《Defence Technology(防务技术)》 2026年第1期316-329,共14页
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may... Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart. 展开更多
关键词 Sandwich panel Fiber reinforced plastic composites Finite element analysis Variable stiffness Impact resistance Regression analysis Process optimization
在线阅读 下载PDF
Application of the improved dung beetle optimizer,muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area,China 被引量:1
6
作者 Jiarui Cai Bo Sun +5 位作者 Huijun Wang Yi Zheng Siyu Zhou Huixin Li Yanyan Huang Peishu Zong 《Atmospheric and Oceanic Science Letters》 2025年第1期18-23,共6页
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th... Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance. 展开更多
关键词 Groundwater depth Multi-head attention Improved dung beetle optimizer CNN-LSTM CNN-GRU Ningxia
在线阅读 下载PDF
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
7
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer Multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer 被引量:1
8
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 MULTI-OBJECTIVE optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Bayesian-optimized lithology identification via visible and near-infrared spectral data analysis 被引量:1
9
作者 Zhenhao Xu Shan Li +2 位作者 Peng Lin Hang Xiang Qianji Li 《Intelligent Geoengineering》 2025年第1期1-13,共13页
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ... Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site. 展开更多
关键词 Lithology identification Rock spectral HYPERSPECTRAL Artificial neural networks Bayesian optimization
在线阅读 下载PDF
Collaborative Trajectory Planning for Stereoscopic Agricultural Multi-UAVs Driven by the Aquila Optimizer
10
作者 Xinyu Liu Longfei Wang +1 位作者 Yuxin Ma Peng Shao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1349-1376,共28页
Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task tr... Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV. 展开更多
关键词 Stereoscopic agriculture unmanned aerial vehicle MULTI-TASK interference model Aquila optimizer
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model 被引量:1
11
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms Fruit fly optimization algorithm
在线阅读 下载PDF
Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation
12
作者 Adel Binbusayyis Mohemmed Sha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期909-931,共23页
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ... Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system. 展开更多
关键词 Smart Grid machine learning particle swarm optimization XGBoost dynamic inertia weight update
在线阅读 下载PDF
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
13
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
在线阅读 下载PDF
Narwhal Optimizer:A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems
14
作者 Raja Masadeh Omar Almomani +4 位作者 Abdullah Zaqebah Shayma Masadeh Kholoud Alshqurat Ahmad Sharieh Nesreen Alsharman 《Computers, Materials & Continua》 2025年第11期3709-3737,共29页
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw... This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world. 展开更多
关键词 optimization metaheuristic optimization algorithm narwhal optimization algorithm benchmarks
在线阅读 下载PDF
Hybrid Reptile-Snake Optimizer Based Channel Selection for Enhancing Alzheimer’s Disease Detection
15
作者 Digambar Puri Pramod Kachare +3 位作者 Smith Khare Ibrahim Al-Shourbaji Abdoh Jabbari Abdalla Alameen 《Journal of Bionic Engineering》 2025年第2期884-900,共17页
The global incidence of Alzheimer's Disease(AD)is on a swift rise.The Electroencephalogram(EEG)signals is an effective tool for the identification of AD and its initial Mild Cognitive Impairment(MCI)stage using ma... The global incidence of Alzheimer's Disease(AD)is on a swift rise.The Electroencephalogram(EEG)signals is an effective tool for the identification of AD and its initial Mild Cognitive Impairment(MCI)stage using machine learning models.Analysis of AD using EEG involves multi-channel analysis.However,the use of multiple channels may impact the classification performance due to data redundancy and complexity.In this work,a hybrid EEG channel selection is proposed using a combination of Reptile Search Algorithm and Snake Optimizer(RSO)for AD and MCI detection based on decomposition methods.Empirical Mode Decomposition(EMD),Low-Complexity Orthogonal Wavelet Filter Banks(LCOWFB),Variational Mode Decomposition,and discrete-wavelet transform decomposition techniques have been employed for subbands-based EEG analysis.We extracted thirty-four features from each subband of EEG signals.Finally,a hybrid RSO optimizer is compared with five individual metaheuristic algorithms for effective channel selection.The effectiveness of this model is assessed by two publicly accessible AD EEG datasets.An accuracy of 99.22% was achieved for binary classification from RSO with EMD using 4(out of 16)EEG channels.Moreover,the RSO with LCOWFBs obtained 89.68%the average accuracy for three-class classification using 7(out of 19)channels.The performance reveals that RSO performs better than individual Metaheuristic algorithms with 60%fewer channels and improved accuracy of 4%than existing AD detection techniques. 展开更多
关键词 Alzheimer's Disease Brain disorder ELECTROENCEPHALOGRAM Reptile Search Algorithm Snake optimizer optimization
在线阅读 下载PDF
Elevating Software Defect Prediction Performance Through an Optimized GA⁃DT and PSO⁃ACO Hybrid Approach
16
作者 Chennappan R Mathumathi E 《Journal of Harbin Institute of Technology(New Series)》 2025年第3期66-74,共9页
In the dynamic landscape of software technologies,the demand for sophisticated applications across diverse industries is ever⁃increasing.However,predicting software defects remains a crucial challenge for ensuring the... In the dynamic landscape of software technologies,the demand for sophisticated applications across diverse industries is ever⁃increasing.However,predicting software defects remains a crucial challenge for ensuring the resilience and dependability of software systems.This study presents a novel software defect prediction technique that significantly enhances performance through a hybrid machine learning approach.The innovative methodology integrates a Genetic Algorithm(GA)for precise feature selection,a Decision Tree(DT)for robust classification,and leverages the capabilities of Particle Swarm Optimization(PSO)and Ant Colony Optimization(ACO)algorithms for precision⁃driven optimization.The utilization of datasets from varied sources enriches the predictive prowess of our model.Of particular significance in our pursuit is the unwavering focus on enhancing the prediction process through a highly refined PSO⁃ACO algorithm,thereby optimizing the efficiency and effectiveness of the GA⁃DT hybrid model.The thorough evaluation of our proposed approach unfolds across seven software projects,unveiling a paradigm shift in performance metrics.Results unequivocally demonstrate that the GA⁃DT with PSO⁃ACO algorithm surpasses its counterparts,showcasing unparalleled accuracy and reliability.Furthermore,our hybrid approach demonstrates outstanding performance in terms of F⁃measure,with an impressive increase rate of 78%. 展开更多
关键词 software quality particle swarm optimization ant colony optimization
在线阅读 下载PDF
Adaptive Multi-strategy Rabbit Optimizer for Large-scale Optimization
17
作者 Baowei Xiang Yixin Xiang 《Journal of Bionic Engineering》 2025年第1期398-416,共19页
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for th... As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020. 展开更多
关键词 Adaptive parameter Large scale optimization Rabbit algorithm Swarm intelligence Engineering optimization
在线阅读 下载PDF
CEOE-Net:Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis
18
作者 Huihui Yang Saif Ur Rehman Khan +2 位作者 Omair Bilal Chao Chen Ming Zhao 《Computer Modeling in Engineering & Sciences》 2025年第11期2401-2434,共34页
Detecting Alzheimer’s disease is essential for patient care,as an accurate diagnosis influences treatment options.Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampa... Detecting Alzheimer’s disease is essential for patient care,as an accurate diagnosis influences treatment options.Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy,while manual diagnosis is susceptible to error.Optimal computer-aided diagnosis(CAD)systems are essential for improving accuracy and reducing misclassification risks.This study proposes an optimized ensemble method(CEOE-Net)that initiates with the selection of pre-trained models,including DenseNet121,ResNet50V2,and ResNet152V2 for unique feature extraction.Each selected model is enhanced with the inclusion of a channel attention(CA)block to improve the feature extraction process.In addition,this study employs the Short Time Fourier transform(STFT)technique with each individual model for hierarchical feature extraction before making final predictions in classifying MRI images of dementia and non-demented individuals,considering them as backbone models for building the ensemble method.STFT highlights subtle differences in brain structure and activity,particularly when combined with CA mechanisms that emphasize relevant features by converting spatial data into the frequency domain.The predictions generated from these models are then processed by the Chaotic Evolution Optimization(CEO)algorithm,which determines the optimal weightage set for each backbone model to maximize their contribution.The CEO optimizer explores weight distribution to ensure the most effective combination of model predictions for enhancing classification accuracy,thus significantly improving overall ensemble performance.This study utilized three datasets for validation:two private clinical brain MRI datasets(OSASIS and ADNI)to test the proposed model’s effectiveness.Image augmentation techniques were also employed to enhance dataset diversity and improve classification performance.The proposed CEOE-Net outperforms conventional baseline models and existing methods by showing its effectiveness as a clinical tool for the accurate classification of dementia and non-dementia MRI brain images,as well as autistic and non-autistic facial features.It achieved consistent accuracies of 93.44%on OSASIS and 81.94%on ADNI. 展开更多
关键词 Neuroimaging diagnostics channel attention Alzheimer’s disease chaotic evolution optimization image fusion optimized ensemble
在线阅读 下载PDF
Optimization of Laminating Angles for Skirt Panels of EMUs Front Using Composite Materials Based on the Cheetah Optimizer
19
作者 Yuqing Ma Chunge Nie Siqun Ma 《Journal of Electronic Research and Application》 2025年第5期1-6,共6页
With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly r... With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly reducing the energy consumption during the operation of EMUs(Electric Multiple Units).This study aims to explore the application of composite materials in the lightweight design of EMU front skirts and proposes a design method based on threedimensional Hashin failure criteria and the Cheetah Optimizer(CO)to achieve maximum lightweight efficiency.The UMAT subroutine was developed based on the three-dimensional Hashin failure criteria to calculate failure parameters,which were used as design parameters in the CO.The model calculations and result extraction were implemented in MATLAB,and the Cheetah Optimizer iteratively determined the optimal laminating angle design that minimized the overall failure factor.After 100 iterations,ensuring structural integrity,the optimized design reduced the weight of the skirt panel by 60% compared to the original aluminum alloy structure,achieving significant lightweight benefits.This study provides foundational data for the lightweight design of EMUs. 展开更多
关键词 Composite Cheetah optimizer EMU FEA
在线阅读 下载PDF
Framework for the Structural Analysis of Fractional Differential Equations via Optimized Model Reduction
20
作者 Inga Telksniene Tadas Telksnys +3 位作者 Romas Marcinkevicius Zenonas Navickas Raimondas Ciegis Minvydas Ragulskis 《Computer Modeling in Engineering & Sciences》 2025年第11期2131-2156,共26页
Fractional differential equations(FDEs)provide a powerful tool for modeling systems with memory and non-local effects,but understanding their underlying structure remains a significant challenge.While numerous numeric... Fractional differential equations(FDEs)provide a powerful tool for modeling systems with memory and non-local effects,but understanding their underlying structure remains a significant challenge.While numerous numerical and semi-analytical methods exist to find solutions,new approaches are needed to analyze the intrinsic properties of the FDEs themselves.This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives.The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form,represented as the sum of a closed-form,integer-order component G(y)and a residual fractional power seriesΨ(x).This transformed FDE is subsequently reduced to a first-order ordinary differential equation(ODE).The primary novelty of the proposed methodology lies in treating the structure of the integer-order component G(y)not as fixed,but as a parameterizable polynomial whose coefficients can be determined via global optimization.Using particle swarm optimization,the framework identifies an optimal ODE architecture by minimizing a dual objective that balances solution accuracy against a high-fidelity reference and the magnitude of the truncated residual series.The effectiveness of the approach is demonstrated on both a linear FDE and a nonlinear fractional Riccati equation.Results demonstrate that the framework successfully identifies an optimal,low-degree polynomial ODE architecture that is not necessarily identical to the forcing function of the original FDE.This work provides a new tool for analyzing the underlying structure of FDEs and gaining deeper insights into the interplay between local and non-local dynamics in fractional systems. 展开更多
关键词 Fractional differential equations Caputo derivative fractional power series ordinary differential equation model reduction structural optimization particle swarm optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部