Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study...Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.展开更多
This editorial critically evaluated the recent study by Wang et al,which systematically investigated the efficacy of perioperative disinfection and isolation measures(including preoperative povidone-iodine disinfectio...This editorial critically evaluated the recent study by Wang et al,which systematically investigated the efficacy of perioperative disinfection and isolation measures(including preoperative povidone-iodine disinfection,intraoperative sterile barrier techniques,and postoperative intensive care)in reducing infection rates.The study further incorporated the surgical site infection risk prediction model(constructed via the least absolute shrinkage and selection operator al-gorithm,integrating patients'baseline characteristics,surgical indicators,and regional antibiotic-resistant bacterial data),and proposed a dynamic prevention and control system termed“disinfection protocols-predictive models–real-time monitoring”.The article highlighted that preoperative risk stratification,intraoperative personalized antibiotic selection,and postoperative multidimensional monitoring(encompassing inflammatory biomarkers,imaging,and microbiological testing)enabled the precise identification of high-risk patients and optimized intervention thresholds.Future research is deemed necessary to validate the synergistic effects of disinfection protocols and predictive models through large-scale multicenter studies,combined with advanced intraoperative rapid microbial detection technologies.This approach aims to establish standardized infection control protocols tailored for precision medicine and regional adaptability.Future research should prioritize validating the synergistic effects of disinfection protocols and predictive models via multi-center studies,while incorporating advanced rapid intraoperative microbial detection technologies to develop standardized infection prevention and control procedures.Such efforts will enhance the implementation of precise and regionally adaptive infection control strategies.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t...This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical co...In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.展开更多
The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due t...The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations.展开更多
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred...Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam...Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.展开更多
20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model...20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model for flatness in a 20-high mill is proposed based on a model coupling method capable of forecasting the flatness of cold-rolled stainless steel thin strips under symmetric and asymmetric rolling conditions.The model integrates deformation coordination equations between rolls,force and moment balance equations,strip exit transverse displacement equations,and no-load roll gap equations into a unified set of linear equations.This solution process avoids repeated iterations between the elastic deformation model of the roll system and the plastic deformation model of the strip,which is a limitation of the traditional method and significantly improves the calculation speed and stability.The accuracy of the model was verified via a ZR22B-52 Sendzimir 20-high mill.The measured and calculated flatness values highly coincided,confirming the model’s accuracy.Rolling calculations of 304 stainless steel thin strips demonstrate that the new model results are consistent with those of the traditional method.The calculation time of the new model is only approximately 0.04%-0.35%that of the traditional method.On this basis,the impact of common flatness control methods on the flatness has been analyzed.展开更多
As a critical material in construction engineering,concrete requires accurate prediction of its outlet temperature to ensure structural quality and enhance construction efficiency.This study proposes a novel hybrid pr...As a critical material in construction engineering,concrete requires accurate prediction of its outlet temperature to ensure structural quality and enhance construction efficiency.This study proposes a novel hybrid prediction method that integrates a heat conduction physical model with a multilayer perceptron(MLP)neural network,dynamically fused via a weighted strategy to achieve high-precision temperature estimation.Experimental results on an independent test set demonstrated the superior performance of the fused model,with a root mean square error(RMSE)of 1.59℃ and a mean absolute error(MAE)of 1.23℃,representing a 25.3%RMSE reduction compared to conventional physical models.Ambient temperature and coarse aggregate temperature were identified as the most influential variables.Furthermore,the model-based temperature control strategy reduced costs by 0.81 CNY/m^(3),showing significant potential for improving resource efficiency and supporting sustainable construction practices.展开更多
To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,whic...To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.展开更多
The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantl...The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states.展开更多
The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communica...The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3706901)the National Natural Science Foundation of China(No.52090041)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC 001).
文摘Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.
文摘This editorial critically evaluated the recent study by Wang et al,which systematically investigated the efficacy of perioperative disinfection and isolation measures(including preoperative povidone-iodine disinfection,intraoperative sterile barrier techniques,and postoperative intensive care)in reducing infection rates.The study further incorporated the surgical site infection risk prediction model(constructed via the least absolute shrinkage and selection operator al-gorithm,integrating patients'baseline characteristics,surgical indicators,and regional antibiotic-resistant bacterial data),and proposed a dynamic prevention and control system termed“disinfection protocols-predictive models–real-time monitoring”.The article highlighted that preoperative risk stratification,intraoperative personalized antibiotic selection,and postoperative multidimensional monitoring(encompassing inflammatory biomarkers,imaging,and microbiological testing)enabled the precise identification of high-risk patients and optimized intervention thresholds.Future research is deemed necessary to validate the synergistic effects of disinfection protocols and predictive models through large-scale multicenter studies,combined with advanced intraoperative rapid microbial detection technologies.This approach aims to establish standardized infection control protocols tailored for precision medicine and regional adaptability.Future research should prioritize validating the synergistic effects of disinfection protocols and predictive models via multi-center studies,while incorporating advanced rapid intraoperative microbial detection technologies to develop standardized infection prevention and control procedures.Such efforts will enhance the implementation of precise and regionally adaptive infection control strategies.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
文摘This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported in part by the National Natural Science Foundation of China(62133013,U22A2060)Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM01Z024)。
文摘In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.
基金supported by the National Key Research and Development Program of China(2022YFB4200902)。
文摘The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations.
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金supported in part by the Guangdong Provincial Universities'Characteristic Innovation Project under Grant 2024KTSCX360in part by the Guangdong Educational Science Planning Project under Grant 2023GXJK837.
文摘Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金Supported by National Natural Science Foundation of China(Grant Nos.52402497,52025121 and 52002066)Young Scientists Project and General Project of Applied Basic Research in Yunnan Province(Grant Nos.202501AT070296,202401AU070196)+1 种基金The Key Laboratory of Modern Agricultural Engineering of Ordinary Colleges and Universities of Education Department of Autonomous Region(Grant No.TDNG2023108)Jiangsu Provincial Achievements Transformation Project(Grant No.BA2018023).
文摘Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.
基金supported by the National Natural Science Foundation of China(No.U21A20118)the Natural Science Foundation of Hebei Province(No.E2023203065)the National Key Laboratory of Metal Forming Technology and Heavy Equipment,China National Heavy Machinery Research Institute Co.,Ltd.(No.S2208100.W04).Author infor。
文摘20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model for flatness in a 20-high mill is proposed based on a model coupling method capable of forecasting the flatness of cold-rolled stainless steel thin strips under symmetric and asymmetric rolling conditions.The model integrates deformation coordination equations between rolls,force and moment balance equations,strip exit transverse displacement equations,and no-load roll gap equations into a unified set of linear equations.This solution process avoids repeated iterations between the elastic deformation model of the roll system and the plastic deformation model of the strip,which is a limitation of the traditional method and significantly improves the calculation speed and stability.The accuracy of the model was verified via a ZR22B-52 Sendzimir 20-high mill.The measured and calculated flatness values highly coincided,confirming the model’s accuracy.Rolling calculations of 304 stainless steel thin strips demonstrate that the new model results are consistent with those of the traditional method.The calculation time of the new model is only approximately 0.04%-0.35%that of the traditional method.On this basis,the impact of common flatness control methods on the flatness has been analyzed.
基金funded by National Key Research and Development Plan(2018YFC0406703)Supported by the National Natural Science Foundation of China(51779277)+4 种基金Chinese Academy of Water Sciences(SD0145B072021)Supported by the State Key Laboratory of Flow Water Cycle Simulation and Regulation,SKL2022ZD05Support provided by the fund of State Key Laboratory of Water Cycle and Water Security,IWHR(Grant No.SKL2024YJZD05)Support provided by the fund of Power China(DJ-ZDXM-2020-50)Support provided by the fund of Research and Application of Intelligent Simulation and Intelligent Control Technology for Structural States of Gravity DAMS in Jingling Reservoir Project,Zhejiang Province(JLSKFW-2024113).
文摘As a critical material in construction engineering,concrete requires accurate prediction of its outlet temperature to ensure structural quality and enhance construction efficiency.This study proposes a novel hybrid prediction method that integrates a heat conduction physical model with a multilayer perceptron(MLP)neural network,dynamically fused via a weighted strategy to achieve high-precision temperature estimation.Experimental results on an independent test set demonstrated the superior performance of the fused model,with a root mean square error(RMSE)of 1.59℃ and a mean absolute error(MAE)of 1.23℃,representing a 25.3%RMSE reduction compared to conventional physical models.Ambient temperature and coarse aggregate temperature were identified as the most influential variables.Furthermore,the model-based temperature control strategy reduced costs by 0.81 CNY/m^(3),showing significant potential for improving resource efficiency and supporting sustainable construction practices.
文摘To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.
基金supported by the National Natural Science Foundation of China(Grant No.52105466).
文摘The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states.
基金Supported by the National Key Research and Development Program of China(Grant No.2023YFE0204700)the National Natural Science Foundation of China(Grant Nos.52472402 and 52302469)+7 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012327 and 2024A1515010449)the research grant of the University of Macao(Grant No.MYRG GRG2023-00235-FST-UMDF)Shandong Provincial Natural Science Foundation(Grant No.ZR2023ME133)the Fundamental Research Funds for the Central Universities(Grant No.N2403012)the Science and Technology Development Fund of Macao SAR(Grant No.0091/2023/AMJ)the China Postdoctoral Science Foundation(Grant Nos.2023M740538 and AM2024003)the Zhuhai Science and Technology Innovation Bureau(Grant No.2220004003107)the Yunfu Science and Technology Project(Grant No.2024090202).
文摘The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.