In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l...In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrin...The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrino anomaly.In this paper,we report a method that utilizes a feedforward neural network(FNN)model to decompose the prompt energy spectrum observed in a short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such as^(235)U,^(238)U,^(239)Pu,and^(241)Pu in the nuclear reactor.We present two training strategies for the model and compare them with the traditional X^(2) minimization method by applying them to the same set of pseudo-data corresponding to a total exposure of(2.9×5×1800)GW_(th)·tons·days.The results show that the FNN model not only converges faster and better during the fitting process but also achieves relative errors of less than 1%in the 2−8 MeV range in the extracted spectra,outperforming the X^(2) minimization method.The feasibility and superiority of this method were validated in the study.展开更多
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma...This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.展开更多
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t...Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.展开更多
Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precis...Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.展开更多
Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significant...Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.展开更多
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn...Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.展开更多
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t...This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou...Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to me...Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.展开更多
The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a ...The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a new control strategy- prediction control-and its application in Multi-Variable Control Process.The research result is worthy for automatic control in pro- cess industry.展开更多
This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is f...This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is formed by collecting flight data and the gust data encountered during the aircraft flight.A neural network identification model is first trained to accurately predict the aircraft’s output.Then,based on the output of the identification model and the collected flight data,the parameters of the time-delay neural network controller are obtained through a learning process.The simulation results show that the designed intelligent controller has good gust alleviation effects for both continuous turbulence excitation and discrete gust excitation.For example,when the aircraft is 40000 kg and the flight speed is 0.81Ma,the controller achieves a 67.82%reduction in wingtip acceleration and a 35.90%reduction in center of mass acceleration under continuous turbulence excitation.When considering the measurement uncertainties,such as noise existing in the collected data,the trained controller can still achieve an acceptable gust alleviation effect.Finally,considering a flight in which the aircraft mass is constantly changing,the intelligent controller,which continuously learns from new flight data,maintains a good gust alleviation effect throughout the flight.展开更多
This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-...This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.展开更多
Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and wea...Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.展开更多
By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variable...By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.展开更多
Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and applicatio...Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and application of Xh?K0. Fundamental factors for numerical simplification are provided respectively for bi-variable indeterminate forms, tri-variable indeterminate forms and the universal extending multiplier.展开更多
Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differen...Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differentials of unitary indeterminate forms. The fruit of this work is going to be reported in three parts. The first part presents the standard analysis on this subject which supplements, systematizes and advances L. Hospital抯 principles on differential calculus by applying special ,general, and limit guaranteeing theories together with K(t) and XhK0 theories. The combination of theoretical analysis and geometric signification makes the derivation intuitional, visual and easy to perceive.展开更多
文摘In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金supported by the China Postdoctoral Science Foundation(No.2024M753715)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Nos.24qnpy125 and 22lglj11)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120030).
文摘The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrino anomaly.In this paper,we report a method that utilizes a feedforward neural network(FNN)model to decompose the prompt energy spectrum observed in a short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such as^(235)U,^(238)U,^(239)Pu,and^(241)Pu in the nuclear reactor.We present two training strategies for the model and compare them with the traditional X^(2) minimization method by applying them to the same set of pseudo-data corresponding to a total exposure of(2.9×5×1800)GW_(th)·tons·days.The results show that the FNN model not only converges faster and better during the fitting process but also achieves relative errors of less than 1%in the 2−8 MeV range in the extracted spectra,outperforming the X^(2) minimization method.The feasibility and superiority of this method were validated in the study.
基金supported by the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(202228087)the National Natural Science Foundation of China(62073190).
文摘This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.
基金Supported by National Natural Science Foundation of China(Grant No.52375502)EU H2020 MSCA R&I Programme(Grant No.101022696).
文摘Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.
基金supported in part by the National Natural Science Foundation of China under Project No.52207043。
文摘Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.
基金supported by the“Shuimu Tsinghua Scholar”Project,China(No.2024SM223)the National Science and Technology Major Project,China(No.Y2022-V-0002-0028).
文摘Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.
基金supported by the National Natural Science Foundation of China(Grant Nos.52231014 and 52271361)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515010684).
文摘Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.
文摘This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
基金the Key Scientific Research Fund Project of Xihua University(No.Z1320406)the National Natural Science Foundation of China(No.51379179)
文摘Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.
文摘The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a new control strategy- prediction control-and its application in Multi-Variable Control Process.The research result is worthy for automatic control in pro- cess industry.
文摘This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is formed by collecting flight data and the gust data encountered during the aircraft flight.A neural network identification model is first trained to accurately predict the aircraft’s output.Then,based on the output of the identification model and the collected flight data,the parameters of the time-delay neural network controller are obtained through a learning process.The simulation results show that the designed intelligent controller has good gust alleviation effects for both continuous turbulence excitation and discrete gust excitation.For example,when the aircraft is 40000 kg and the flight speed is 0.81Ma,the controller achieves a 67.82%reduction in wingtip acceleration and a 35.90%reduction in center of mass acceleration under continuous turbulence excitation.When considering the measurement uncertainties,such as noise existing in the collected data,the trained controller can still achieve an acceptable gust alleviation effect.Finally,considering a flight in which the aircraft mass is constantly changing,the intelligent controller,which continuously learns from new flight data,maintains a good gust alleviation effect throughout the flight.
基金supported by Prince Sultan University,Riyadh,Saudi Arabia,under research grant SEED-2022-CE-95。
文摘This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.
文摘Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.
文摘By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
文摘Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and application of Xh?K0. Fundamental factors for numerical simplification are provided respectively for bi-variable indeterminate forms, tri-variable indeterminate forms and the universal extending multiplier.
文摘Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differentials of unitary indeterminate forms. The fruit of this work is going to be reported in three parts. The first part presents the standard analysis on this subject which supplements, systematizes and advances L. Hospital抯 principles on differential calculus by applying special ,general, and limit guaranteeing theories together with K(t) and XhK0 theories. The combination of theoretical analysis and geometric signification makes the derivation intuitional, visual and easy to perceive.