Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neuro...Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.展开更多
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause o...Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic rea- soning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.展开更多
Disorders of sex development(DSD)are a group of rare complex clinical syndromes with multiple etiologies.Distinguishing the various causes of DSD is quite difficult in clinical practice,even for senior general physici...Disorders of sex development(DSD)are a group of rare complex clinical syndromes with multiple etiologies.Distinguishing the various causes of DSD is quite difficult in clinical practice,even for senior general physicians because of the similar and atypical clinical manifestations of these conditions.In addition,DSD are difficult to diagnose because most primary doctors receive insufficient training for DSD.Delayed diagnoses and misdiagnoses are common for patients with DSD and lead to poor treatment and prognoses.On the basis of the principles and algorithms of dynamic uncertain causality graph(DUCG),a diagnosis model for DSD was jointly constructed by experts on DSD and engineers of artificial intelligence.“Chaining”inference algorithm and weighted logic operation mechanism were applied to guarantee the accuracy and efficiency of diagnostic reasoning under incomplete situations and uncertain information.Verification was performed using 153 selected clinical cases involving nine common DSD-related diseases and three causes other than DSD as the differential diagnosis.The model had an accuracy of 94.1%,which was significantly higher than that of interns and third-year residents.In conclusion,the DUCG model has broad application prospects as a computer-aided diagnostic tool for DSDrelated diseases.展开更多
文摘Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.
基金supported by the Medical and Health Research Program of Zhejiang Province(No.2015KYB128)the Zhejiang Provincial Natural Science Foundation(No.LQ15H030004),China
文摘Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic rea- soning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.
基金This research was supported by the National Key Research and Development Program of China(No.2016YFC0901501)CAMS Innovation Fund for Medical Science(No.CAMS-2017-I2M–1-011)the Research Project of the Institute of Internet Industry,Tsinghua University,titled“DUCG theory and application of medical aided diagnosis-algorithm of introducing classification variables in DUCG.”。
文摘Disorders of sex development(DSD)are a group of rare complex clinical syndromes with multiple etiologies.Distinguishing the various causes of DSD is quite difficult in clinical practice,even for senior general physicians because of the similar and atypical clinical manifestations of these conditions.In addition,DSD are difficult to diagnose because most primary doctors receive insufficient training for DSD.Delayed diagnoses and misdiagnoses are common for patients with DSD and lead to poor treatment and prognoses.On the basis of the principles and algorithms of dynamic uncertain causality graph(DUCG),a diagnosis model for DSD was jointly constructed by experts on DSD and engineers of artificial intelligence.“Chaining”inference algorithm and weighted logic operation mechanism were applied to guarantee the accuracy and efficiency of diagnostic reasoning under incomplete situations and uncertain information.Verification was performed using 153 selected clinical cases involving nine common DSD-related diseases and three causes other than DSD as the differential diagnosis.The model had an accuracy of 94.1%,which was significantly higher than that of interns and third-year residents.In conclusion,the DUCG model has broad application prospects as a computer-aided diagnostic tool for DSDrelated diseases.