A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good...This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.展开更多
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inp...The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF.The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation.The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF(degree-of-freedom)hydraulic vibration table.The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
This paper discusses transmission performance and power allocation strategies in an underlay cognitive radio (CR) network that contains relay and massive multi-input multi-output (MIMO). The downlink transmission ...This paper discusses transmission performance and power allocation strategies in an underlay cognitive radio (CR) network that contains relay and massive multi-input multi-output (MIMO). The downlink transmission performance of a relay-aided massive MIMO network without CR is derived. By using the power distribution criteria, the kth user's asymptotic signal to interference and noise ratio (SINR) is independent of fast fading. When the ratio between the base station (BS) antennas and the relay antennas becomes large enough, the transmission performance of the whole system is independent of BS-to-relay channel parameters and relates only to the relay-to-users stage. Then cognitive transmission performances of primary users (PUs) and secondary users (SUs) in an underlay CR network with massive MIMO are derived under perfect and imperfect channel state information (CSI), including the end-to-end SINR and achievable sum rate. When the numbers of primary base station (PBS) antennas, secondary base station (SBS) antennas, and relay antennas become infinite, the asymptotic SINR of the kth PU and SU is independent of fast fading. The interference between the primary network and secondary network can be canceled asymptotically.Transmission performance does not include the interference temperature. The secondary network can use its peak power to transmit signals without causing any interference to the primary network. Interestingly, when the antenna ratio becomes large enough, the asymptotic sum rate equals half of the rate of a single-hop single-antenna K-user system without fast fading. Next, the PUs' utility function is defined. The optimal relay power is derived to maximize the utility function. The numerical results verify our analysis. The relationships between the transmission rate and the antenna nunber, relay power, and antenna ratio are simulated. We show that the massive MIMO with linear pre-coding can mitigate asymptotically the interference in a multi-user underlay CR network. The primary and secondary networks can operate independently.展开更多
A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation p...A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.展开更多
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail...A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance d...In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(M...In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.展开更多
In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes ...In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.展开更多
Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precodin...Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
文摘This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF.The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation.The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF(degree-of-freedom)hydraulic vibration table.The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
基金Project supported by the National Natural Science Foundation of China(Nos.61227801 and 61629101)the Huawei Communications Technology Lab,the Open Research Foundation of Xi’an Jiaotong University(No.sklms2015015)the China Scholarship Council(CSC)
文摘This paper discusses transmission performance and power allocation strategies in an underlay cognitive radio (CR) network that contains relay and massive multi-input multi-output (MIMO). The downlink transmission performance of a relay-aided massive MIMO network without CR is derived. By using the power distribution criteria, the kth user's asymptotic signal to interference and noise ratio (SINR) is independent of fast fading. When the ratio between the base station (BS) antennas and the relay antennas becomes large enough, the transmission performance of the whole system is independent of BS-to-relay channel parameters and relates only to the relay-to-users stage. Then cognitive transmission performances of primary users (PUs) and secondary users (SUs) in an underlay CR network with massive MIMO are derived under perfect and imperfect channel state information (CSI), including the end-to-end SINR and achievable sum rate. When the numbers of primary base station (PBS) antennas, secondary base station (SBS) antennas, and relay antennas become infinite, the asymptotic SINR of the kth PU and SU is independent of fast fading. The interference between the primary network and secondary network can be canceled asymptotically.Transmission performance does not include the interference temperature. The secondary network can use its peak power to transmit signals without causing any interference to the primary network. Interestingly, when the antenna ratio becomes large enough, the asymptotic sum rate equals half of the rate of a single-hop single-antenna K-user system without fast fading. Next, the PUs' utility function is defined. The optimal relay power is derived to maximize the utility function. The numerical results verify our analysis. The relationships between the transmission rate and the antenna nunber, relay power, and antenna ratio are simulated. We show that the massive MIMO with linear pre-coding can mitigate asymptotically the interference in a multi-user underlay CR network. The primary and secondary networks can operate independently.
基金The National Science and Technology Major Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Innovation Technology Fund of Jiangsu Province(No.BC2012006)
文摘A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.
基金Project(51561135003)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(51338003)supported by the Key Project of National Natural Science Foundation of China
文摘A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金Supported by the National Natural Science Foundation of China (No.60496311)China High-Tech 863 Plan (No.2006AA01Z264).
文摘In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
基金supported by the Scientific Research Innovation Development Foundation of Army Engineering University((2019)71).
文摘In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.
基金supported by Islamic Azad University–Ardabil Branch。
文摘In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.
基金Supported by Shantou Youth Scientific Research Fund(No.YR11002)Distinguished Youth Fund in Higher Education of Guangdong Province(No.2012LYM_0064)
文摘Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.