期刊文献+
共找到358,912篇文章
< 1 2 250 >
每页显示 20 50 100
Obtaining Electromagnetic Properties of Multi-Type Media in Realistic Environments:State-of-the-Art and Prospects 被引量:2
1
作者 Guo Lantu Guan Ke +5 位作者 Liu Ting He Danping Zhang Haixia Zhu Qiuming Lu Jun Zhang Minggao 《China Communications》 2025年第1期25-40,共16页
To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions tha... To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study. 展开更多
关键词 electromagnetic properties of media multi-type media parameter inversion ray tracing realistic environment
在线阅读 下载PDF
Multi-type feature fusion visual navigation for asteroid landing
2
作者 Wenbo XIU Shengying ZHU Yanjie LIU 《Chinese Journal of Aeronautics》 2025年第7期529-544,共16页
In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited ... In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia. 展开更多
关键词 Pose estimation multi-type feature fusion Feature selection Landmark selection NORMALIZATION Absolute navigation Relative navigation Visual navigation
原文传递
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
3
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
4
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
5
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction data fusion Deep learning Precision medicine
在线阅读 下载PDF
Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modifed genetic algorithm with multi-type genes 被引量:40
6
作者 Deng Qibo Yu Jianqiao Wang Ningfei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1238-1250,共13页
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper... The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one. 展开更多
关键词 Cooperative control Genetic algorithm Heterogeneous unmanned aerial vehicles multi-type genes Task assignment
原文传递
Multi-type ant system algorithm for the time dependent vehicle routing problem with time windows 被引量:16
7
作者 DENG Ye ZHU Wanhong +1 位作者 LI Hongwei ZHENG Yonghui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期625-638,共14页
The time dependent vehicle routing problem with time windows(TDVRPTW)is considered.A multi-type ant system(MTAS)algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS)algorithms is propose... The time dependent vehicle routing problem with time windows(TDVRPTW)is considered.A multi-type ant system(MTAS)algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS)algorithms is proposed.This combination absorbs the merits of the two algorithms in solutions construction and optimization separately.In order to improve the efficiency of the insertion procedure,a nearest neighbor selection(NNS)mechanism,an insertion local search procedure and a local optimization procedure are specified in detail.And in order to find a balance between good scouting performance and fast convergence rate,an adaptive pheromone updating strategy is proposed in the MTAS.Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW)benchmark instances and the TDVRPTW instances,and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research. 展开更多
关键词 multi-type ant system(MTAS) time dependent vehicle routing problem with time windows(VRPTW) nearest neighbor selection(NNS)
在线阅读 下载PDF
Multi-type sensor placement and response reconstruction for building structures: Experimental investigations 被引量:4
8
作者 Rong-Pan Hu You-Lin Xu Sheng Zhan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期29-46,共18页
Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement i... Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment. 展开更多
关键词 experimental investigation multi-type sensors inclinometer response reconstruction optimal sensor placement
在线阅读 下载PDF
Understanding the superior mechanical properties of Mg-3Al-Zn alloy sheets:Role of multi-type unique textures
9
作者 Jun Xu Jun Zhao +7 位作者 Bin Jiang Wenjun Liu Hong Yang Xintao Li Yuehua Kang Nan Zhou Kaihong Zheng Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1104-1112,共9页
Mg-3Al-1Zn(AZ31)sheets were produced by transverse gradient extrusion(TGE)process.The flow behavior and dynamic recrystallization during extrusion were systematically analyzed.The microstructures,textures,and mechanic... Mg-3Al-1Zn(AZ31)sheets were produced by transverse gradient extrusion(TGE)process.The flow behavior and dynamic recrystallization during extrusion were systematically analyzed.The microstructures,textures,and mechanical behavior of extruded AZ31 sheet were also analyzed and compared with conventional extruded(CE)sheet.The results showed that fine grain structure and multi-type unique textures were formed in TGE sheet because of the generation of extra flow velocity along transverse direction(TD)and flow velocity gradient along extrusion direction(ED)during extrusion.The basal poles gradually deviated away normal direction(ND)from edge to center of the TGE sheet along TD,and the largest inclination angle at center region reached around 65°.Furthermore,the basal poles inclined from ED to TD 40°-63°,except for the center region of TGE sheet.The TGE sheet presented higher ductility and strain hardening exponent(n-value),but lower yield strength and Lankford value(r-value)in comparison with the CE sheet.Both the basal<a>slip and tensile twins were easy to be activated during deformation,and the largest elongation of 41%and the lowest yield strength of 86.5 MPa were obtained for the ED-center sample in the TGE sheet. 展开更多
关键词 transverse gradient extrusion multi-type unique textures mechanical properties
在线阅读 下载PDF
Inferring Multi-Type Birth-Death Parameters for a Structured Host Population with Application to HIV Epidemic in Africa
10
作者 Hassan W. Kayondo Samuel Mwalili John M. Mango 《Computational Molecular Bioscience》 2019年第4期108-131,共24页
Human Immunodeficiency Virus (HIV) dynamics in Africa are purely characterised by sparse sampling of DNA sequences for individuals who are infected. There are some sub-groups that are more at risk than the general pop... Human Immunodeficiency Virus (HIV) dynamics in Africa are purely characterised by sparse sampling of DNA sequences for individuals who are infected. There are some sub-groups that are more at risk than the general population. These sub-groups have higher infectivity rates. We came up with a likelihood inference model of multi-type birth-death process that can be used to make inference for HIV epidemic in an African setting. We employ a likelihood inference that incorporates a probability of removal from infectious pool in the model. We have simulated trees and made parameter inference on the simulated trees as well as investigating whether the model distinguishes between heterogeneous and homogeneous dynamics. The model makes fairly good parameter inference. It distinguishes between heterogeneous and homogeneous dynamics well. Parameter estimation was also performed under sparse sampling scenario. We investigated whether trees obtained from a structured population are more balanced than those from a non-structured host population using tree statistics that measure tree balance and imbalance. Trees from non-structured population were more balanced basing on Colless and Sackin indices. 展开更多
关键词 HIV LIKELIHOOD INFERENCE multi-type Birth-Death Process Probability of Removal STRUCTURED POPULATION
暂未订购
Study on the Effect of Multi-Type Current Transformers Hybrid Operation on Differential Protection of the Bus Based on Dynamic Simulation
11
作者 Wenbiao Liao Zexin Zhou +2 位作者 Rongrong Zhan Yanjun Li Zhengguang Chen 《Energy and Power Engineering》 2017年第4期1-11,共11页
This paper analyzes characteristics of multi type current transformers hybrid operation for each branch of the bus and their effects on differential protection of the bus. By theoretically analyzing transmission chara... This paper analyzes characteristics of multi type current transformers hybrid operation for each branch of the bus and their effects on differential protection of the bus. By theoretically analyzing transmission characteristics of multi type current transformers and their influence factors, we study the dynamic model testing method of multi type current transformers for the bus, and design 3 kinds of testing schemes by making the equivalent model based on the field of P-level current transformer, TPY-level current transformer and electronic current transformer, and build the hybrid operation testing platform of multi type current transformers. Finally, we compare and analyze the transmission characteristics difference of multi type current transformers on the same branch and the characteristics difference of hybrid operation in two successive external faults, analyze the cause behind the differences, and put forward the corresponding improvement measures. 展开更多
关键词 DIFFERENTIAL Protection of the BUS multi-type Current Transformer Hybrid Operation DYNAMIC SIMULATION TEST Method DYNAMIC SIMULATION TEST PLATFORM
暂未订购
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
12
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Integration of data science with the intelligent IoT(IIoT):Current challenges and future perspectives 被引量:2
13
作者 Inam Ullah Deepak Adhikari +3 位作者 Xin Su Francesco Palmieri Celimuge Wu Chang Choi 《Digital Communications and Networks》 2025年第2期280-298,共19页
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s... The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions. 展开更多
关键词 data science Internet of things(IoT) Big data Communication systems Networks Security data science analytics
在线阅读 下载PDF
Diversity,Complexity,and Challenges of Viral Infectious Disease Data in the Big Data Era:A Comprehensive Review 被引量:1
14
作者 Yun Ma Lu-Yao Qin +1 位作者 Xiao Ding Ai-Ping Wu 《Chinese Medical Sciences Journal》 2025年第1期29-44,I0005,共17页
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr... Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape. 展开更多
关键词 viral infectious diseases big data data diversity and complexity data standardization artificial intelligence data analysis
暂未订购
A Newly Established Air Pollution Data Center in China 被引量:1
15
作者 Mei ZHENG Tianle ZHANG +11 位作者 Yaxin XIANG Xiao TANG Yinan WANG Guannan GENG Yuying WANG Yingjun LIU Chunxiang YE Caiqing YAN Yingjun CHEN Jiang ZHU Qiang ZHANG Tong ZHU 《Advances in Atmospheric Sciences》 2025年第4期597-604,共8页
Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of ... Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex. 展开更多
关键词 air pollution data center PLATFORM multi-source data China
在线阅读 下载PDF
A Diffusion Model for Traffic Data Imputation 被引量:1
16
作者 Bo Lu Qinghai Miao +5 位作者 Yahui Liu Tariku Sinshaw Tamir Hongxia Zhao Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期606-617,共12页
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov... Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability. 展开更多
关键词 data imputation diffusion model implicit feature time series traffic data
在线阅读 下载PDF
Challenges to and Countermeasures for the Value Realization of Healthcare Data Elements in China 被引量:1
17
作者 Tianan Yang Wenhao Deng +3 位作者 Ran Liu Tianyu Wang Yuanyuan Dai Jianwei Deng 《Health Care Science》 2025年第3期225-228,共4页
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper... As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3]. 展开更多
关键词 China healthcare data elements healthcare data management value realization
暂未订购
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
18
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 Smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
Data Elements Accumulation Enabling the“Threeizations”Upgrading of Manufacturing:Theoretical Mechanism 被引量:1
19
作者 Hao Xie 《Proceedings of Business and Economic Studies》 2025年第2期298-304,共7页
The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This pap... The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry. 展开更多
关键词 data elements MANUFACTURING HIGH-END INTELLIGENT Green
在线阅读 下载PDF
Influence of different data selection criteria on internal geomagnetic field modeling 被引量:4
20
作者 HongBo Yao JuYuan Xu +3 位作者 Yi Jiang Qing Yan Liang Yin PengFei Liu 《Earth and Planetary Physics》 2025年第3期541-549,共9页
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i... Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications. 展开更多
关键词 Macao Science Satellite-1 SWARM geomagnetic field modeling data selection core field crustal field
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部