Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-ter...Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.展开更多
In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard ...In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.展开更多
现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-re...现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.展开更多
文摘Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
基金The National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2013BAJ05B03)
文摘In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.
文摘现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.