Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs positio...This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs position information by predicting the future position later than the position included in the last-received information by a fixed amount of time. It also advances the output time of position information at each local terminal by the same amount of time. We deal with two different types of work using haptic media so as to demonstrate the effectiveness of the scheme. We assess the output quality of haptic media for the two types of work subjectively and objectively by Quality of Experience (QoE) assessment. We further clarify the relationship between subjective and objective assessment results.展开更多
The universal creep equation relates creep behavior (ε/ε 0) to aging time (t a), coefficient of retardation time (β), and intrinsic time (t 0). The relation was used to treat the creep experimental ...The universal creep equation relates creep behavior (ε/ε 0) to aging time (t a), coefficient of retardation time (β), and intrinsic time (t 0). The relation was used to treat the creep experimental data for pipe specimens of polypropylene block copolymer (PPC), which were aged for different days (short term) and tested under different stress levels at a certain temperature. Then unified master lines were constructed with the treated data and curves according to the universal equation. The master straight lines can be used for extrapolation to predict the long term creep behavior and lifetime of the pipe materials of PPC in the same way as plate materials.展开更多
This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the tradit...This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the traditional prediction model was proposed 26 years ago. It is straight forward but not accurate enough. The proposed back propagation neural network has 5 inputs, 5 neutrons and 1 output. Because of its simplicity, it requires very little calculation power which is negligible compared with existing computation complexity. The test results show 10% - 30% higher prediction accuracy and PSNR improvement up to 0.3 dB. The above advantages make it a feasible replacement of the current model.展开更多
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs position information by predicting the future position later than the position included in the last-received information by a fixed amount of time. It also advances the output time of position information at each local terminal by the same amount of time. We deal with two different types of work using haptic media so as to demonstrate the effectiveness of the scheme. We assess the output quality of haptic media for the two types of work subjectively and objectively by Quality of Experience (QoE) assessment. We further clarify the relationship between subjective and objective assessment results.
文摘The universal creep equation relates creep behavior (ε/ε 0) to aging time (t a), coefficient of retardation time (β), and intrinsic time (t 0). The relation was used to treat the creep experimental data for pipe specimens of polypropylene block copolymer (PPC), which were aged for different days (short term) and tested under different stress levels at a certain temperature. Then unified master lines were constructed with the treated data and curves according to the universal equation. The master straight lines can be used for extrapolation to predict the long term creep behavior and lifetime of the pipe materials of PPC in the same way as plate materials.
文摘This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the traditional prediction model was proposed 26 years ago. It is straight forward but not accurate enough. The proposed back propagation neural network has 5 inputs, 5 neutrons and 1 output. Because of its simplicity, it requires very little calculation power which is negligible compared with existing computation complexity. The test results show 10% - 30% higher prediction accuracy and PSNR improvement up to 0.3 dB. The above advantages make it a feasible replacement of the current model.