期刊文献+
共找到770篇文章
< 1 2 39 >
每页显示 20 50 100
Multi-strategy improved red-billed blue magpie optimizer for Kapur multi-threshold image segmentation
1
作者 WU Jin XIONG Hao +1 位作者 LUO Wenxuan GUO Linlin 《High Technology Letters》 2025年第4期365-372,共8页
Multi-threshold image segmentation techniques based on intelligent optimization algorithms show great potential in low-cost,real-time applications.These methods are efficient even with limited computational resources.... Multi-threshold image segmentation techniques based on intelligent optimization algorithms show great potential in low-cost,real-time applications.These methods are efficient even with limited computational resources.This paper proposes a multi-strategy improved red-billed blue magpie optimizer(MIRBMO)for Kapur multi-threshold image segmentation,aiming to enhance segmentation quality.First,Sobol sequences with elite reverse learning are used to optimize the distribution of the initial population,accelerating the optimization process.Second,lens imaging reverse learning is introduced to help the algorithm escape local optima.Finally,the golden sine strategy is adopted to increase the search space diversity and explore potential optimal solutions.The algorithm’s performance is evaluated using the 8 classic benchmark test functions,and results show that MIRBMO outperforms red-billed blue magpie optimizer(RBMO)in optimization capability and demonstrates clear advantages over other intelligent optimization algorithms.When applied to Kapur multi-threshold segmentation,MIRBMO yields a threshold combination with higher entropy values and produces segmented images with superior peak signal-to-noise ratio(PSNR),structural similarity index measure(SSIM),and feature similarity index measure(FSIM)values,indicating its strong application potential. 展开更多
关键词 red-billed blue magpie optimizer image segmentation multi-threshold Kapur maximum entropy
在线阅读 下载PDF
A Local Contrast Fusion Based 3D Otsu Algorithm for Multilevel Image Segmentation 被引量:13
2
作者 Ashish Kumar Bhandari Arunangshu Ghosh Immadisetty Vinod Kumar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期200-213,共14页
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ... To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations. 展开更多
关键词 1D otsu 2D otsu 3D otsu image fusion local contrast multi-level image segmentation
在线阅读 下载PDF
Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm 被引量:9
3
作者 姚畅 陈后金 《Journal of Central South University》 SCIE EI CAS 2009年第4期640-646,共7页
According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorit... According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance. 展开更多
关键词 blood vessel segmentation pulse coupled neural network (PCNN) otsu NEURON
暂未订购
Image Segmentation of Brain MR Images Using Otsu’s Based Hybrid WCMFO Algorithm 被引量:6
4
作者 A.Renugambal K.Selva Bhuvaneswari 《Computers, Materials & Continua》 SCIE EI 2020年第8期681-700,共20页
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee... In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm. 展开更多
关键词 Hybrid WCMFO algorithm otsu’s function multilevel thresholding image segmentation brain MR image
在线阅读 下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
5
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
在线阅读 下载PDF
基于改进Otsu算法的轴承图像阈值分割方法
6
作者 赵宇航 吴超华 +2 位作者 王鑫 张晟琦 史晓亮 《机电工程》 北大核心 2026年第1期34-44,共11页
针对轴承装配后质检时,工业相机采集到的图像存在混合噪声和背光源过曝,导致图像分割精度不高、影响后续处理的问题,提出了一种基于多特征感知与贝叶斯优化的改进大津算法(Otsu)的轴承图像阈值分割方法。首先,在图像感知层面,读取、计... 针对轴承装配后质检时,工业相机采集到的图像存在混合噪声和背光源过曝,导致图像分割精度不高、影响后续处理的问题,提出了一种基于多特征感知与贝叶斯优化的改进大津算法(Otsu)的轴承图像阈值分割方法。首先,在图像感知层面,读取、计算了图像的灰度值、梯度幅值、局部二值模型并完成了储存,对三特征数据分别进行了归一化处理,加权融合了三特征数据,得到了轴承图像的加权融合图;然后,在计算效率层面,引入了贝叶斯优化与分块动态规划方法,替代了Otsu的穷举法;最后,结合感知方法与加速方法,得到了一种基于多特征感知与贝叶斯优化的改进Otsu算法(MFB-Otsu),并与其他阈值分割算法进行了性能对比实验。研究结果表明:与Otsu算法、自适应分割算法对比,MFB-Otsu算法在保留了轴承图像全局亮度分布的基础上,强化了外轮廓边缘,抑制了边缘噪声,输出图像边缘平滑,背景与前景彻底分离;在实测边缘提取中,边缘信息保留完整,噪点干扰率相较于Otsu降低了55%;在客观图像评价指标方面,该算法的分割准确率、交并比、F1值分别达到0.997、0.989、0.994,优于Otsu算法和自适应分割算法;在计算效率层面,相较于Otsu提高了12.9%。改进Otsu算法在轴承尺寸检测中表现出良好的通用性与稳定性,具有一定的工程应用价值。 展开更多
关键词 轴承装配 图像处理 图像分割 大津算法 多特征感知和贝叶斯优化 otsu加速方法 三维度特征加权 分块动态优化
在线阅读 下载PDF
Infrared image segmentation method based on 2D histogram shape modification and optimal objective function 被引量:8
7
作者 Songtao Liu Donghua Gao Fuliang Yin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期528-536,共9页
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the... In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification. 展开更多
关键词 infrared image segmentation 2D histogram otsu maximum entropy maximum correlation minimum Renyi entropy.
在线阅读 下载PDF
A new level set model for cell image segmentation 被引量:4
8
作者 马竟锋 侯凯 +1 位作者 包尚联 陈纯 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期568-574,共7页
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these... In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. 展开更多
关键词 cell image segmentation 3-phase level set otsu algorithm
原文传递
Deer Body Adaptive Threshold Segmentation Algorithm Based on Color Space 被引量:6
9
作者 Yuheng Sun Ye Mu +4 位作者 Qin Feng Tianli Hu He Gong Shijun Li Jing Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第8期1317-1328,共12页
In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or... In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer. 展开更多
关键词 Artificial breeding color space deer body recognition image segmentation K-MEANS multi-target recognition otsu
在线阅读 下载PDF
An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations 被引量:5
10
作者 Mohamed Abdel-Basset Reda Mohamed +3 位作者 Mohamed Abouhawwash Ripon K.Chakrabortty Michael J.Ryan Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第9期2961-2977,共17页
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med... Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others. 展开更多
关键词 Magnetic resonance imaging brain image segmentation artificial jellyfish search algorithm ranking method local minima otsu method
在线阅读 下载PDF
Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing 被引量:2
11
作者 Jiaochen Chen Zhennao Cai +4 位作者 Huiling Chen Xiaowei Chen José Escorcia-Gutierrez Romany F.Mansour Mahmoud Ragab 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2240-2275,共36页
Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopa... Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images. 展开更多
关键词 multi-threshold image segmentation 2D Rényi entropy Renal pathology Cuckoo search algorithm Swarm intelligence algorithms Bionic algorithm
在线阅读 下载PDF
An Efficient Multilevel Threshold Image Segmentation Method for COVID-19 Imaging Using Q-Learning Based Golden Jackal Optimization 被引量:1
12
作者 Zihao Wang Yuanbin Mo Mingyue Cui 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2276-2316,共41页
From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Consi... From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Considering the severely infectious nature of COVID-19,the diagnosis of COVID-19 has become crucial.Identification through the use of Computed Tomography(CT)images is an efficient and quick means.Therefore,scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images.In this paper,we propose a reinforcement learning-based golden jackal optimization algorithm,which is named QLGJO,to segment CT images in furtherance of the diagnosis of COVID-19.Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem.This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum.In addition,one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population.Two experiments were carried out to test the performance of the proposed algorithm.First,compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions.Secondly,QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics.It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics.Furthermore,the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO. 展开更多
关键词 COVID-19 Bionic algorithm Golden jackal optimization Image segmentation otsu and Kapur method
在线阅读 下载PDF
A Semi-Vectorial Hybrid Morphological Segmentation of Multicomponent Images Based on Multithreshold Analysis of Multidimensional Compact Histogram 被引量:1
13
作者 Adles Kouassi Sié Ouattara +2 位作者 Jean-Claude Okaingni Wognin J. Vangah Alain Clement 《Open Journal of Applied Sciences》 2017年第11期597-610,共14页
In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different ... In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested. 展开更多
关键词 MORPHOLOGICAL segmentation Vectorial Orders Semi-Vectorial segmentation MULTIDIMENSIONAL COMPACT HISTOGRAM multi-thresholds Fusion Inter-Class Classification
暂未订购
混沌映射麻雀搜索优化OTSU的图像分割算法
14
作者 余由俊 谢峰 +1 位作者 王成 张大伟 《光学仪器》 2025年第4期25-32,共8页
针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种... 针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种群初始化引入分段线性混沌映射(piecewise linear chaotic map,PWLCM),提高了算法的搜索空间和寻优性能,帮助算法及时跳出局部最优。将本文提出的算法与常用的粒子群优化算法(particle swarm optimizer,PSO)、灰熊优化算法(grey wolf optimizer,GWO)和麻雀搜索算法(sparrow search algorithm,SSA)进行对比,采用皮肤镜图像进行双阈值OTSU分割实验,结果表明,所提出的ISSA不仅在寻优方面有所增强,迭代的次数相比于PSO、GWO和SSA算法也分别减少了92.2%、68.2%和41.7%,运行时间减少了66.4%、43.4%和21.1%,证明了该算法的可行性。 展开更多
关键词 图像分割 麻雀搜索算法 otsu算法 PWLCM混沌映射 皮肤镜图像
在线阅读 下载PDF
基于改进OTSU算法的柴油车排放烟度等级识别方法研究
15
作者 许欣 李冰 《环境监控与预警》 2025年第3期53-60,共8页
为有效管控柴油车黑烟排放并保护生态环境,提出一种改进的柴油车烟度等级识别方法。首先,针对轻级黑烟被错分至背景的问题,提出了多阈值分割方法。从黑烟扩散特性角度出发,在原有大津算法(OTSU算法)基础上引入新的阈值,用以分离轻级黑... 为有效管控柴油车黑烟排放并保护生态环境,提出一种改进的柴油车烟度等级识别方法。首先,针对轻级黑烟被错分至背景的问题,提出了多阈值分割方法。从黑烟扩散特性角度出发,在原有大津算法(OTSU算法)基础上引入新的阈值,用以分离轻级黑烟与背景,对输入黑烟图像实行双阈值、双区域分割策略。这一改进提升了算法对轻级黑烟的分割精度,并将黑烟分割为双区域,从而降低类内差异,这种分区处理为捕捉黑烟特征奠定基础。其次,针对黑度值计算不准确的问题,引入一种权重标定机制。通过收集1—4级黑烟数据样本,利用改进后的OTSU算法对黑烟进行分割,得到双区域重级黑烟(x_(1))、轻级黑烟(x_(2)),将黑烟真实等级转化为对应的黑度值(y),利用最小二乘法拟合,建立了计算机生成的黑度值与实际黑烟浓度之间的映射关系。结果表明,该方法有效反映了黑烟真实黑度,提高了黑烟等级评估的精准性,在构建的数据集上,该方法准确率达到91.18%,显著提升了黑烟监测与评估的可靠性。 展开更多
关键词 烟度分级 大津算法 柴油车黑烟 图像分割
在线阅读 下载PDF
基于改进麻雀搜索算法的二维Otsu多阈值分割 被引量:1
16
作者 黄聪 《岳阳职业技术学院学报》 2025年第1期78-82,共5页
本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、... 本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、柯西变异策略更新麻雀种群中发现者和加入者的位置,以解决种群陷入局部最优的问题;最后,通过改进麻雀搜索算法求解二维Otsu算法的分割阈值。在BSDS500分割数据集上与5种群体智能优化算法优化的二维Otsu算法进行全面比较,在结构相似性和计算效率2个量化指标上的综合实验结果表明:该方法在分割精度和计算效率方面明显优于相比较的其他5种方法。 展开更多
关键词 图像分割 二维otsu算法 多阈值 改进麻雀搜索算法
在线阅读 下载PDF
基于双通道麻雀改进OTSU的FOD分割方法
17
作者 费春国 陈世洪 《计算机科学》 北大核心 2025年第S1期476-482,共7页
在基于图像处理分割机场跑道异物(FOD)的方法中,基于深度学习的方法不能准确感知未经训练的异物。对此,提出基于双通道麻雀改进大津法(OTSU)的分割方法(DS-OTSU)来分割感知异物。该分割方法将麻雀搜索算法与OTSU相结合,在麻雀搜索算法... 在基于图像处理分割机场跑道异物(FOD)的方法中,基于深度学习的方法不能准确感知未经训练的异物。对此,提出基于双通道麻雀改进大津法(OTSU)的分割方法(DS-OTSU)来分割感知异物。该分割方法将麻雀搜索算法与OTSU相结合,在麻雀搜索算法中加入佳点集优化初始种群,同时在双通道中分别加入正反两个方向的扰动,从而改变麻雀搜索算法目标函数的计算方法,通过加入双重动态的萤火虫扰动改变种群更新方式,将双通道的运行结果进行对比融合,将原本只能单阈值分割图像的OTSU优化为可以分割阈值段的方法,滤除图像背景部分,最终得到FOD的分割结果。实验分析表明,所提方法在分割精度和收敛速度上均优于其他方法。 展开更多
关键词 阈值分割 otsu 机场跑道异物 麻雀搜索算法 萤火虫扰动
在线阅读 下载PDF
基于OTSU最大类间方差法的纤维图像分割算法
18
作者 孙玉民 钟正欣 +1 位作者 朱嘉恺 马竞赛 《软件》 2025年第9期110-112,共3页
本文详细阐述了基于OTSU最大类间方差法的纤维图像分割技术,并对其在实际应用中的性能进行了评估。OTSU算法作为一种自适应阈值分割方法,通过寻找最优阈值,能够自动将纤维图像中的前景与背景分离,有效减少了人工干预的需求。算法的核心... 本文详细阐述了基于OTSU最大类间方差法的纤维图像分割技术,并对其在实际应用中的性能进行了评估。OTSU算法作为一种自适应阈值分割方法,通过寻找最优阈值,能够自动将纤维图像中的前景与背景分离,有效减少了人工干预的需求。算法的核心在于最大化类间方差,从而实现图像分割的最佳效果。结合形态学操作,该算法在处理纤维图像中的空洞、噪点以及细节保留方面表现出色,提高了图像分割的质量。实验结果表明,该算法不仅适用于羊毛、羊绒等常见纤维材质的图像分割,在多种复杂纤维图像处理中也展现出了良好的稳定性和适应性。本研究为纤维图像分析领域的进一步发展提供了有益的参考和可靠的技术支持。 展开更多
关键词 otsu算法 纤维图像分割 自适应阈值 形态学操作 图像处理
在线阅读 下载PDF
基于改进二维Otsu算法的车道线分割研究
19
作者 刘智勇 杨旭旭 《河南科技》 2025年第8期34-41,共8页
【目的】传统的车道线图像分割算法识别精度低,易受噪声干扰,导致车道偏离预警系统的性能受到影响。基于此,提出一种θ-划分的最优斜分线阈值算法。【方法】首先,对车载摄像机采集到的图像进行感兴趣区域提取、灰度化、滤波去噪等预处... 【目的】传统的车道线图像分割算法识别精度低,易受噪声干扰,导致车道偏离预警系统的性能受到影响。基于此,提出一种θ-划分的最优斜分线阈值算法。【方法】首先,对车载摄像机采集到的图像进行感兴趣区域提取、灰度化、滤波去噪等预处理操作,得到有利于车道线分割的图像。其次,结合二维Otsu算法,使用一条绕阈值点旋转的阈值分割直线对二维直方图进行分割,从而将二维直方图分为目标和背景两部分,并在阈值分割线转动过程中计算目标和背景之间的类间方差,当其达到最大时确定最优的阈值分割线。通过这种方式将二维直方图中的边界和噪声区域信息包含在分割的判定中。【结果】实验结果表明,改进后的算法对车道线分割的精度提高了1.5%,抗噪性能增加了2.1%。即使在面临复杂的道路场景时,该算法在车道线分割方面仍表现出色。【结论】该算法能够为后续车道线检测提供更加可靠的车道线分割图像,对车道偏离预警系统的实现具有重要意义。 展开更多
关键词 车道线分割 二维otsu 二维直方图 二值图像
在线阅读 下载PDF
三维直方图重建和降维的Otsu阈值分割算法 被引量:30
20
作者 申铉京 龙建武 +1 位作者 陈海鹏 魏巍 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1108-1114,共7页
针对三维Otsu阈值分割算法中因区域误分而产生的抗噪性差这一问题,提出了一种三维直方图重建和降维的Otsu阈值分割算法.该方法首先在详细分析三维直方图中噪声点分布的基础上,通过重建三维直方图,减弱了噪声干扰;然后将三维直方图区域... 针对三维Otsu阈值分割算法中因区域误分而产生的抗噪性差这一问题,提出了一种三维直方图重建和降维的Otsu阈值分割算法.该方法首先在详细分析三维直方图中噪声点分布的基础上,通过重建三维直方图,减弱了噪声干扰;然后将三维直方图区域划分由八分法改为二分法,使得阈值搜索的空间维度从三维降低到一维,减少了处理时间和存储空间.本文最后给出了算法的分割结果和运行时间,并与三维Otsu方法、二维分解法和二维斜分法进行对比.实验结果表明,本文算法的抗噪性更强,且分割效果更为理想,同时时间复杂度也远低于三维Otsu法. 展开更多
关键词 图像分割 阈值选取 otsu算法 三维otsu算法
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部