To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a...To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a non-fully anthropomorphic design,attaching only at the thigh and ankle with a backward-knee configuration to mimic natural human knee movement.The design incorporates a single elastic element at the hip for gravity compensation and dual elastic elements at the knee for terrain adaptability,which adjust based on walking context.The design’s effectiveness was assessed by measuring metabolic cost reduction and motor output torque under various walking conditions.Results showed significant metabolic cost savings of 5.8–8.8%across different speeds and a 7.9%reduction during 9°incline walking on a flat indoor surface.Additionally,the spring element decreased hip motor output torque by 7–15.9%and knee torque by 8.1–14.2%.Outdoor tests confirmed the design’s robustness and effectiveness in reducing motor torque across terrains,highlighting its potential to advance multi-terrain adaptive exoskeleton research.展开更多
To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall ca...To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall caused by the dynamic excitation of the road spectrum function and analyze techniques for reducing the vibration and enhancing the driving moment of a four-wheel differential-speed mobile robot.A double-wishbone vibration reduction suspension and a moment compensator were designed for a multi-terrain mobile robot by theoretically describing its suspensionwheel-road dynamics.Also,the mobile robot’s road adaptability and traversal abilities were mathematically characterized under dynamic excitation.Co-simulation in ADAMS-MATLAB/Simulink is performed such as the harsh condition of in situ rotation and outdoor experimental schemes are implemented in which the experimental data are analyzed.The experimental result verifies the correctness of the theoretical analysis,as well as the effectiveness of the vibration reduction suspension and the moment compensator.The compatibility of the mobile robot’s driving mechanisms with road traversal abilities has been improved under various terrain conditions in complex field operation scenarios.展开更多
基金sponsored by the Fundamental Research Funds for the Central Universities[N2329001].
文摘To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a non-fully anthropomorphic design,attaching only at the thigh and ankle with a backward-knee configuration to mimic natural human knee movement.The design incorporates a single elastic element at the hip for gravity compensation and dual elastic elements at the knee for terrain adaptability,which adjust based on walking context.The design’s effectiveness was assessed by measuring metabolic cost reduction and motor output torque under various walking conditions.Results showed significant metabolic cost savings of 5.8–8.8%across different speeds and a 7.9%reduction during 9°incline walking on a flat indoor surface.Additionally,the spring element decreased hip motor output torque by 7–15.9%and knee torque by 8.1–14.2%.Outdoor tests confirmed the design’s robustness and effectiveness in reducing motor torque across terrains,highlighting its potential to advance multi-terrain adaptive exoskeleton research.
基金Supported by Anhui Engineering Research Center on Information Fusion and Control of Intelligent Robot(Grant No.IFCIR2024014)Open Fund Key Laboratory of Machine Vision Inspection of Anhui Provincial,China(Grant No.KLMVI-2024-HIT-14)+2 种基金University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-076)Anhui Future Technology Research Institute Enterprise Cooperation Project(Grant No.2023qyhz35)2024 Wuhu Science and Technology Planning Project(Grant Nos.2024cj40,2024cxy24).
文摘To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall caused by the dynamic excitation of the road spectrum function and analyze techniques for reducing the vibration and enhancing the driving moment of a four-wheel differential-speed mobile robot.A double-wishbone vibration reduction suspension and a moment compensator were designed for a multi-terrain mobile robot by theoretically describing its suspensionwheel-road dynamics.Also,the mobile robot’s road adaptability and traversal abilities were mathematically characterized under dynamic excitation.Co-simulation in ADAMS-MATLAB/Simulink is performed such as the harsh condition of in situ rotation and outdoor experimental schemes are implemented in which the experimental data are analyzed.The experimental result verifies the correctness of the theoretical analysis,as well as the effectiveness of the vibration reduction suspension and the moment compensator.The compatibility of the mobile robot’s driving mechanisms with road traversal abilities has been improved under various terrain conditions in complex field operation scenarios.