The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have us...The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.展开更多
Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree c...Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification.展开更多
Landslide susceptibility map(LSM)is a crucial tool for managing landslide hazards and identifying potential landslide areas.However,current LSMs rely primarily on static landslide-related factors with little variation...Landslide susceptibility map(LSM)is a crucial tool for managing landslide hazards and identifying potential landslide areas.However,current LSMs rely primarily on static landslide-related factors with little variation over several decades,thereby overlooking the movement of slopes and failing to capture landslide dynamics.The long-term ground deformation map(GDM)derived from multi-temporal interferometric synthetic aperture radar(MT-InSAR)can effectively address the shortcomings.Fengjie County is an important area for geohazard management in the Three Gorges Reservoir Area(TGRA),China.Landslides in this area,however,cause significant socio-economic loss due to geological,tectonic,climatic,and anthropological factors.This research aims to integrate random forest(RF)with MT-InSAR to generate a landslide dynamic susceptibility map(LDSM)for Fengjie County,enhancing the reliability of landslide risk management.First,the RF model was employed to generate a static LSM,whereas MT-InSAR was utilized to obtain the GDM of the study area from January 2020 to June 2023.The static LSM and the GDM were subsequently integrated using a dynamic weight matrix to derive the LDSM.Our analysis covered a temporal framework spanning three years,focusing on spatiotemporal changes in landslide susceptibility levels and the influence of climate factors.Compared with the static LSM,the LDSM can promptly identify moving landslide areas,reduce high landslide susceptibility areas,and achieve greater accuracy.Moreover,the spatiotemporal changes in landslide susceptibility are regulated by the total annual rainfall,with wet years being more conducive to landslides than dry years.The proposed LDSM offers useful insights for the dynamic prevention and refined management of landslide hazards in the TGRA,significantly enhancing the resilience in this region.展开更多
The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims ...The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.展开更多
This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma pa...This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma patients undergoing combined camrelizumab and lenvatinib therapy.While we acknowledge the study’s clinical relevance in proposing an easily accessible metabolic biomarker,we delve into the mechanistic plausibility linking insulin resistance to immunotherapy response and angiogenic inhibition.We further critically examine the methodological limitations,including the retrospective design,the populationspecific TyG cut-off value,and unaddressed metabolic confounders.We highlight the imperative for future research to validate its utility across diverse etiologies and treatment settings,and to unravel the underlying immunometabolic pathways.展开更多
BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an e...BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.展开更多
Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this stud...Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three dif- ferent techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coeffi- cients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, re- spectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation be- tween cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.展开更多
Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melt...Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melting of glaciers accelerated,only a few of glaciers in an advancing state during 1970-2000 in the whole Qangtang Plateau.However,the glaciers seemed still more stable in the study area than in most areas of western China.We estimate that glacier retreat was likely due to air temperature warming during 1970-2000 in the Qangtang Plateau.Furthermore,the functional model of glacier system is applied to study climate sensitivity of glacier area changes,which indicates that glacier lifespan mainly depends on the heating rate,secondly the precipitation,and precipitation increasing can slow down glacier retreat and make glacier lifespan prolonged.展开更多
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead t...Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.展开更多
Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperatur...Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.展开更多
Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. M...Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images use...Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.展开更多
Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-h...Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-held radiometer. Normalized difference vegetation index (NDVI) was calculated from spectrum, and the slope of NDVI was obtained as its difference. We evaluated the response of NDVI and its slope to rice growth with a comparison of two late-season rice cultivars. The results showed that NDVI and its slope curves had distinct variation corresponding to rice development and they could be used as cultivar-independent phenological indicators. The dates of flooding and transplanting, tillering, panicle development, heading and flowering, maturity, harvest stages, and even field management practices, could be deduced from these indicators. ‘NDVI ≤ 0’ could be used as a single threshold for the detection of flooding and transplanting. The largest spike in the curve of the NDVI slope indicated the duration of tillering stage. The next spike corresponded to panicle development. The heading and flowering stage was characterized by the maximum NDVI and the change of NDVI slope from positive to negative. At the maturity stage, NDVI decreased continuously, and its slope fluctuated just below zero. When rice grains were completely mature and ready for harvest, NDVI decline was accelerated. At harvest, NDVI slope reached its minimum value. The distinction between heading and maturity stages was obscure, most likely due to NDVI saturation at high biomass. The study might provide references for paddy rice phenology determination through remote sensing images.展开更多
This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, Sep...This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.展开更多
Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools....Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>展开更多
The use of unmanned aerial vehicles(UAV)for forest monitoring has grown significantly in recent years,providing information with high spatial resolution and temporal versatility.UAV with multispectral sensors allow th...The use of unmanned aerial vehicles(UAV)for forest monitoring has grown significantly in recent years,providing information with high spatial resolution and temporal versatility.UAV with multispectral sensors allow the use of indexes such as the normalized difference vegetation index(NDVI),which determines the vigor,physiological stress and photo synthetic activity of vegetation.This study aimed to analyze the spectral responses and variations of NDVI in tree crowns,as well as their correlation with climatic factors over the course of one year.The study area encompassed a 1.6-ha site in Durango,Mexico,where Pinus cembroides,Pinus engelmannii,and Quercus grisea coexist.Multispectral images were acquired with UAV and information on meteorological variables was obtained from NASA/POWER database.An ANOVA explored possible differences in NDVI among the three species.Pearson correlation was performed to identify the linear relationship between NDVI and meteorological variables.Significant differences in NDVI values were found at the genus level(Pinus and Quercus),possibly related to the physiological features of the species and their phenology.Quercus grisea had the lowest NDVI values throughout the year which may be attributed to its sensitivity to relative humidity and temperatures.Although the use of UAV with a multispectral sensor for NDVI monitoring allowed genera differentiation,in more complex forest analyses hyperspectral and LiDAR sensors should be integrated,as well other vegetation indexes be considered.展开更多
To evaluate urban human settlement, we propose a human settlement environment development index(HSEDI) model by choosing vegetation coverage, land surface temperature, impervious surfaces, slope, wetness, and water co...To evaluate urban human settlement, we propose a human settlement environment development index(HSEDI) model by choosing vegetation coverage, land surface temperature, impervious surfaces, slope, wetness, and water condition as the evaluation factors. We applied the proposed model to Xuzhou City, Jiangsu Province, China. Landsat-5 Thematic Mapper(TM) images from 1998 to 2010 and digital elevation model(DEM) data with a 30-m resolution were used to calculate the values of the six evaluation factors. The HSEDI value in Xuzhou City was found to be between 2.24 and 8.10 from 1998 to 2010, and it was further divided into five levels, uninhabitable, moderately uninhabitable, generally inhabitable, moderately inhabitable, and inhabitable. The best HSEDI value was in 2007. The generally inhabitable region was about 100.98 km^2, covering 30.87% of the total area in 2007; the moderately inhabitable region was about 170.58 km2 covering 52.15% of the total area; the inhabitable region was about 32.03 km^2, covering 9.79% of the total area; the percentage of the uninhabitable region was zero; and that of the moderately uninhabitable region was very small, less than 1.00%. Moreover, we analyzed the habitability in the respect of spatial patterns and change detection. Results show that the degraded regions of habitability quality are mainly located in the urban fringe and the improved regions are mainly located in the main urban and rural areas. Reason for the degraded habitability quality is the rapid progress of urbanization. However, the increase in urban green spaces and the construction of the main urban area promoted the improved habitability quality. Besides, we further analyzed socio-economic and socio-demographic data to confirm the results of the habitability analysis. The results indicate that the human settlement in Xuzhou City is in a satisfactory condition, but some efforts should be made to control the possible uninhabitable and moderately uninhabitable regions, and to improve the quality of the generally inhabitable regions.展开更多
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences—Climate Change:Carbon Budget and Relevant Issues(No.XDA05020200)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(NUIST),China(No.2016r036)the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Provincial Department of Education,China(No.2017103000165)
文摘The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.
文摘Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.42225702)the Maria Skłodowska-Curie Action(MSCA)-UPGRADE(mUltiscale IoT equipPed lonG linear infRastructure resilience built and sustAinable DevelopmEnt)project-HORIZON-MSCA-2022-SE-01(Grant No.101131146)。
文摘Landslide susceptibility map(LSM)is a crucial tool for managing landslide hazards and identifying potential landslide areas.However,current LSMs rely primarily on static landslide-related factors with little variation over several decades,thereby overlooking the movement of slopes and failing to capture landslide dynamics.The long-term ground deformation map(GDM)derived from multi-temporal interferometric synthetic aperture radar(MT-InSAR)can effectively address the shortcomings.Fengjie County is an important area for geohazard management in the Three Gorges Reservoir Area(TGRA),China.Landslides in this area,however,cause significant socio-economic loss due to geological,tectonic,climatic,and anthropological factors.This research aims to integrate random forest(RF)with MT-InSAR to generate a landslide dynamic susceptibility map(LDSM)for Fengjie County,enhancing the reliability of landslide risk management.First,the RF model was employed to generate a static LSM,whereas MT-InSAR was utilized to obtain the GDM of the study area from January 2020 to June 2023.The static LSM and the GDM were subsequently integrated using a dynamic weight matrix to derive the LDSM.Our analysis covered a temporal framework spanning three years,focusing on spatiotemporal changes in landslide susceptibility levels and the influence of climate factors.Compared with the static LSM,the LDSM can promptly identify moving landslide areas,reduce high landslide susceptibility areas,and achieve greater accuracy.Moreover,the spatiotemporal changes in landslide susceptibility are regulated by the total annual rainfall,with wet years being more conducive to landslides than dry years.The proposed LDSM offers useful insights for the dynamic prevention and refined management of landslide hazards in the TGRA,significantly enhancing the resilience in this region.
文摘The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.
文摘This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma patients undergoing combined camrelizumab and lenvatinib therapy.While we acknowledge the study’s clinical relevance in proposing an easily accessible metabolic biomarker,we delve into the mechanistic plausibility linking insulin resistance to immunotherapy response and angiogenic inhibition.We further critically examine the methodological limitations,including the retrospective design,the populationspecific TyG cut-off value,and unaddressed metabolic confounders.We highlight the imperative for future research to validate its utility across diverse etiologies and treatment settings,and to unravel the underlying immunometabolic pathways.
基金Supported by Inter Disciplinary Direction Cultivation Project of Hunan University of Chinese Medicine,No.2025JC01032025 Hunan Province Science and Technology Innovation Plan Project,No.2025RC9012+2 种基金2022"Unveiling and Leading"Project of Discipline Construction at Hunan University of Chinese Medicine,No.22JBZ044Changsha Municipal Natural Science Foundation,No.kq2402174Hunan Provincial Science Popularization Fund Project,No.2025ZK4223.
文摘BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.
文摘Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three dif- ferent techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coeffi- cients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, re- spectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation be- tween cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.
基金supported by the National Natural Science Foundation of China (Nos.40871043,40801025)the Project of National Scientific Basic Special Fund on the Ministry of Science and Technology of China (No.2006FY110200)the Key Construction Disciplines of Hunan Province (No.40652001)
文摘Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melting of glaciers accelerated,only a few of glaciers in an advancing state during 1970-2000 in the whole Qangtang Plateau.However,the glaciers seemed still more stable in the study area than in most areas of western China.We estimate that glacier retreat was likely due to air temperature warming during 1970-2000 in the Qangtang Plateau.Furthermore,the functional model of glacier system is applied to study climate sensitivity of glacier area changes,which indicates that glacier lifespan mainly depends on the heating rate,secondly the precipitation,and precipitation increasing can slow down glacier retreat and make glacier lifespan prolonged.
基金supported by the Key Research and Development Program of Heilongjiang,China(Grant No.2022ZX01A25)Cooperative Funding between Huazhong Agricultural University and Shenzhen Institute of Agricultural Genomics(Grant No.SZYJY2022014)+2 种基金Fundamental Research Funds for the Central Universities,Beijing,China(Grant Nos.2662022JC006 and 2662022ZHYJ002)National Natural Science Foundation of China(Grant No.32101819)Huazhong Agriculture University Research Startup Fund,China(Grant Nos.11041810340 and 11041810341).
文摘Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.
基金the National Natural Science Foundation of China (41171281, 40701120)the Beijing Nova Program, China (2008B33)
文摘Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.
基金The National Natural Science Foundation of China(41774023)The Research Grants Council(RGC)of Hong Kong(PolyU152232/17E,PolyU152164/18E),The Faculty of Construction and Environment(ZZGD)+1 种基金The Research Institute for Sustainable Urban Development(RISUD)(1-BBWB)The TerraSAR-X Science plan(GEO3603)。
文摘Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
基金partially supported by the National Natural Science Foundation of China(No.41171323)Jiangsu Provincial Natural Science Foundation(No.BK2012018)+2 种基金the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(No.201109)partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities.
文摘Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
基金supported by the Jiangsu Key Laboratory of Agricultural Meteorology,China(Grant No.JKLAM201203)the National Science and Technology Planning Project in Rural Areas during the ‘Twelfth Five-Year Plan Period’(Grant No.2011BAD32B01)the Six Great Talents Peak Plan of Jiangsu,China(Grant No.NY-038)
文摘Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-held radiometer. Normalized difference vegetation index (NDVI) was calculated from spectrum, and the slope of NDVI was obtained as its difference. We evaluated the response of NDVI and its slope to rice growth with a comparison of two late-season rice cultivars. The results showed that NDVI and its slope curves had distinct variation corresponding to rice development and they could be used as cultivar-independent phenological indicators. The dates of flooding and transplanting, tillering, panicle development, heading and flowering, maturity, harvest stages, and even field management practices, could be deduced from these indicators. ‘NDVI ≤ 0’ could be used as a single threshold for the detection of flooding and transplanting. The largest spike in the curve of the NDVI slope indicated the duration of tillering stage. The next spike corresponded to panicle development. The heading and flowering stage was characterized by the maximum NDVI and the change of NDVI slope from positive to negative. At the maturity stage, NDVI decreased continuously, and its slope fluctuated just below zero. When rice grains were completely mature and ready for harvest, NDVI decline was accelerated. At harvest, NDVI slope reached its minimum value. The distinction between heading and maturity stages was obscure, most likely due to NDVI saturation at high biomass. The study might provide references for paddy rice phenology determination through remote sensing images.
基金Knowledge Innovation Project of CAS No.KZCX02-308+1 种基金 The NASA Land Use and Land Cover Change Program No.NAG5-11160
文摘This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.
文摘Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>
基金supported by the National Council of Science and Technology of Mexico(CONACyT),which provided financial support through scholarships for postgraduate studies to J.L.G.S.(815176)and M.R.C.(507523)。
文摘The use of unmanned aerial vehicles(UAV)for forest monitoring has grown significantly in recent years,providing information with high spatial resolution and temporal versatility.UAV with multispectral sensors allow the use of indexes such as the normalized difference vegetation index(NDVI),which determines the vigor,physiological stress and photo synthetic activity of vegetation.This study aimed to analyze the spectral responses and variations of NDVI in tree crowns,as well as their correlation with climatic factors over the course of one year.The study area encompassed a 1.6-ha site in Durango,Mexico,where Pinus cembroides,Pinus engelmannii,and Quercus grisea coexist.Multispectral images were acquired with UAV and information on meteorological variables was obtained from NASA/POWER database.An ANOVA explored possible differences in NDVI among the three species.Pearson correlation was performed to identify the linear relationship between NDVI and meteorological variables.Significant differences in NDVI values were found at the genus level(Pinus and Quercus),possibly related to the physiological features of the species and their phenology.Quercus grisea had the lowest NDVI values throughout the year which may be attributed to its sensitivity to relative humidity and temperatures.Although the use of UAV with a multispectral sensor for NDVI monitoring allowed genera differentiation,in more complex forest analyses hyperspectral and LiDAR sensors should be integrated,as well other vegetation indexes be considered.
基金Under the auspices of National Natural Science Foundation of China(No.41471356)Fundamental Research Funds for the Central Universities(No.2014ZDPY14)Priority Academic Program Development of Jiangsu Higher Education Institutions(No.SZBF2011-6-B35)
文摘To evaluate urban human settlement, we propose a human settlement environment development index(HSEDI) model by choosing vegetation coverage, land surface temperature, impervious surfaces, slope, wetness, and water condition as the evaluation factors. We applied the proposed model to Xuzhou City, Jiangsu Province, China. Landsat-5 Thematic Mapper(TM) images from 1998 to 2010 and digital elevation model(DEM) data with a 30-m resolution were used to calculate the values of the six evaluation factors. The HSEDI value in Xuzhou City was found to be between 2.24 and 8.10 from 1998 to 2010, and it was further divided into five levels, uninhabitable, moderately uninhabitable, generally inhabitable, moderately inhabitable, and inhabitable. The best HSEDI value was in 2007. The generally inhabitable region was about 100.98 km^2, covering 30.87% of the total area in 2007; the moderately inhabitable region was about 170.58 km2 covering 52.15% of the total area; the inhabitable region was about 32.03 km^2, covering 9.79% of the total area; the percentage of the uninhabitable region was zero; and that of the moderately uninhabitable region was very small, less than 1.00%. Moreover, we analyzed the habitability in the respect of spatial patterns and change detection. Results show that the degraded regions of habitability quality are mainly located in the urban fringe and the improved regions are mainly located in the main urban and rural areas. Reason for the degraded habitability quality is the rapid progress of urbanization. However, the increase in urban green spaces and the construction of the main urban area promoted the improved habitability quality. Besides, we further analyzed socio-economic and socio-demographic data to confirm the results of the habitability analysis. The results indicate that the human settlement in Xuzhou City is in a satisfactory condition, but some efforts should be made to control the possible uninhabitable and moderately uninhabitable regions, and to improve the quality of the generally inhabitable regions.