As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrom...As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree c...Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
Land use and protection has become a global hot spot.How to use land resources is an important topic for the future socio-economic sustainable development.This paper analyzes the land use changes of Mata lake of Shand...Land use and protection has become a global hot spot.How to use land resources is an important topic for the future socio-economic sustainable development.This paper analyzes the land use changes of Mata lake of Shandong province in China,from 1985's to 2000's using multi-temporal remotely sensed data including TM in the 1985s,ETM+in the 2000s and ancillary data such as soil use map,water map etc.The remote sensing imageries were calibrated,registered and geo-referenced,then classified by multi-source information data and remote sensing image interpretation expert system based on knowledge base.Five land use types were extracted from remote sensing imageries,that is,water body,agriculture land,rural settlement,bare land and none-use land.The total precision is 80.7% and Kappa index is 0.825.The analysis result of the remote sensing shows that during the past 15 years,water resource dropped off very promptly from 51.77 km2 to 16.65 km2 and bare land reduced greatly more than 60% in Mata lake region.With the development of the economy and agriculture areas,more and more water body and bare land converted to agriculture land use and rural settlement areas.Since last years,the Mata lake has been affected by natural factor,human activity and increasing population.So its land use pattern greatly changed from 1985 to 2000.The information of land use changes provided scientific supports for land planning and environmental protection.展开更多
Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melt...Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melting of glaciers accelerated,only a few of glaciers in an advancing state during 1970-2000 in the whole Qangtang Plateau.However,the glaciers seemed still more stable in the study area than in most areas of western China.We estimate that glacier retreat was likely due to air temperature warming during 1970-2000 in the Qangtang Plateau.Furthermore,the functional model of glacier system is applied to study climate sensitivity of glacier area changes,which indicates that glacier lifespan mainly depends on the heating rate,secondly the precipitation,and precipitation increasing can slow down glacier retreat and make glacier lifespan prolonged.展开更多
Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperatur...Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.展开更多
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead t...Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.展开更多
Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. M...Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images use...Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.展开更多
Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, Sep...This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.展开更多
Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools....Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>展开更多
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st...Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.展开更多
In this paper,the Multi-Temporal Interferometric Synthetic Aperture Radar(MT-InSAR)technology is adopted to monitor the Line of Sight(LOS)displacement of Fushun West Opencast Coal Mine(FWOCM)and its surrounding areas ...In this paper,the Multi-Temporal Interferometric Synthetic Aperture Radar(MT-InSAR)technology is adopted to monitor the Line of Sight(LOS)displacement of Fushun West Opencast Coal Mine(FWOCM)and its surrounding areas in northeast China using Sentinel-1 Synthetic Aperture Radar(SAR)images acquired from 2018 to 2022.The spatial-temporal evolution of urban subsidence and the south-slope landslide are both analyzed in detail.Comparison with ground measurements and cross-correlation analysis via cross wavelet transform with monthly precipitation data are also conducted,to analyze the influence factors of displacements in FWOCM.The monitoring results show that a subsidence basin appeared in the urban area near the eastern part of the north slope in 2018,with settlement center located at the intersection of E3000 and fault F1.The Qian Tai Shan(QTS)landslide on the south slope,which experienced rapid sliding during 2014 to 2016,presents seasonal deceleration and acceleration with precipitation,with the maximum displacement in vicinity of the Liushan paleochannel.The results of this paper have fully taken in account for the complications of large topographic relief,geological conditions,spatial distribution and temporal evolution characteristics of surface displacements in opencast mining area.The wide range and long time series dynamic monitoring of opencast mine are of great significance to ensure mine safety production and geological disaster prevention in the investigated mining area.展开更多
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ...Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.展开更多
Drone photography is an essential building block of intelligent transportation,enabling wide-ranging monitoring,precise positioning,and rapid transmission.However,the high computational cost of transformer-based metho...Drone photography is an essential building block of intelligent transportation,enabling wide-ranging monitoring,precise positioning,and rapid transmission.However,the high computational cost of transformer-based methods in object detection tasks hinders real-time result transmission in drone target detection applications.Therefore,we propose mask adaptive transformer (MAT) tailored for such scenarios.Specifically,we introduce a structure that supports collaborative token sparsification in support windows,enhancing fault tolerance and reducing computational overhead.This structure comprises two modules:a binary mask strategy and adaptive window self-attention (A-WSA).The binary mask strategy focuses on significant objects in various complex scenes.The A-WSA mechanism is employed to self-attend for balance perfomance and computational cost to select objects and isolate all contextual leakage.Extensive experiments on the challenging CarPK and VisDrone datasets demonstrate the effectiveness and superiority of the proposed method.Specifically,it achieves a mean average precision (mAP@0.5) improvement of 1.25%over car detector based on you only look once version 5 (CD-YOLOv5) on the CarPK dataset and a 3.75%average precision(AP@0.5) improvement over cascaded zoom-in detector (CZ Det) on the VisDrone dataset.展开更多
Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating t...Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating the adoption of advanced,automated approaches for improved forest conservation and management.This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery.A dataset of 3157 images was collected and divided into training(2528),validation(495),and testing(134)sets.To enhance model robustness and generalization,data augmentation was applied to the training part of the dataset.Various YOLO-based models,including YOLOv8,YOLOv9,YOLOv10,YOLOv11,and YOLOv12,were evaluated using different hyperparameters and optimization techniques,such as stochastic gradient descent(SGD)and auto-optimization.These models were assessed in terms of detection accuracy and the number of detected trees.The highest-performing model,YOLOv12m,achieved a mean average precision(mAP@50)of 0.908,mAP@50:95 of 0.581,recall of 0.851,precision of 0.852,and an F1-score of 0.847.The results demonstrate that YOLO-based object detection offers a highly efficient,scalable,and accurate solution for individual tree detection in satellite imagery,facilitating improved forest inventory,monitoring,and ecosystem management.This study underscores the potential of AI-driven tree detection to enhance environmental sustainability and support data-driven decision-making in forestry.展开更多
A brain-computer interface(BCI)based on motor imagery(MI)provides additional control pathways by decoding the intentions of the brain.MI ability has great intra-individual variability,and the majority of MI-BCI system...A brain-computer interface(BCI)based on motor imagery(MI)provides additional control pathways by decoding the intentions of the brain.MI ability has great intra-individual variability,and the majority of MI-BCI systems are unable to adapt to this variability,leading to poor training effects.Therefore,prediction of MI ability is needed.In this study,we propose an MI ability predictor based on multi-frequency EEG features.To validate the performance of the predictor,a video-guided paradigm and a traditional MI paradigm are designed,and the predictor is applied to both paradigms.The results demonstrate that all subjects achieved>85%prediction precision in both applications,with a maximum of 96%.This study indicates that the predictor can accurately predict the individuals’MI ability in different states,provide the scientific basis for personalized training,and enhance the effect of MI-BCI training.展开更多
文摘As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
文摘Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金Minist ry of Land and Resources and Geological Survey of China Foundation(121201050511)
文摘Land use and protection has become a global hot spot.How to use land resources is an important topic for the future socio-economic sustainable development.This paper analyzes the land use changes of Mata lake of Shandong province in China,from 1985's to 2000's using multi-temporal remotely sensed data including TM in the 1985s,ETM+in the 2000s and ancillary data such as soil use map,water map etc.The remote sensing imageries were calibrated,registered and geo-referenced,then classified by multi-source information data and remote sensing image interpretation expert system based on knowledge base.Five land use types were extracted from remote sensing imageries,that is,water body,agriculture land,rural settlement,bare land and none-use land.The total precision is 80.7% and Kappa index is 0.825.The analysis result of the remote sensing shows that during the past 15 years,water resource dropped off very promptly from 51.77 km2 to 16.65 km2 and bare land reduced greatly more than 60% in Mata lake region.With the development of the economy and agriculture areas,more and more water body and bare land converted to agriculture land use and rural settlement areas.Since last years,the Mata lake has been affected by natural factor,human activity and increasing population.So its land use pattern greatly changed from 1985 to 2000.The information of land use changes provided scientific supports for land planning and environmental protection.
基金supported by the National Natural Science Foundation of China (Nos.40871043,40801025)the Project of National Scientific Basic Special Fund on the Ministry of Science and Technology of China (No.2006FY110200)the Key Construction Disciplines of Hunan Province (No.40652001)
文摘Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melting of glaciers accelerated,only a few of glaciers in an advancing state during 1970-2000 in the whole Qangtang Plateau.However,the glaciers seemed still more stable in the study area than in most areas of western China.We estimate that glacier retreat was likely due to air temperature warming during 1970-2000 in the Qangtang Plateau.Furthermore,the functional model of glacier system is applied to study climate sensitivity of glacier area changes,which indicates that glacier lifespan mainly depends on the heating rate,secondly the precipitation,and precipitation increasing can slow down glacier retreat and make glacier lifespan prolonged.
基金the National Natural Science Foundation of China (41171281, 40701120)the Beijing Nova Program, China (2008B33)
文摘Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.
基金supported by the Key Research and Development Program of Heilongjiang,China(Grant No.2022ZX01A25)Cooperative Funding between Huazhong Agricultural University and Shenzhen Institute of Agricultural Genomics(Grant No.SZYJY2022014)+2 种基金Fundamental Research Funds for the Central Universities,Beijing,China(Grant Nos.2662022JC006 and 2662022ZHYJ002)National Natural Science Foundation of China(Grant No.32101819)Huazhong Agriculture University Research Startup Fund,China(Grant Nos.11041810340 and 11041810341).
文摘Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.
基金The National Natural Science Foundation of China(41774023)The Research Grants Council(RGC)of Hong Kong(PolyU152232/17E,PolyU152164/18E),The Faculty of Construction and Environment(ZZGD)+1 种基金The Research Institute for Sustainable Urban Development(RISUD)(1-BBWB)The TerraSAR-X Science plan(GEO3603)。
文摘Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.
基金partially supported by the National Natural Science Foundation of China(No.41171323)Jiangsu Provincial Natural Science Foundation(No.BK2012018)+2 种基金the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(No.201109)partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities.
文摘Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
基金Knowledge Innovation Project of CAS No.KZCX02-308+1 种基金 The NASA Land Use and Land Cover Change Program No.NAG5-11160
文摘This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.
文摘Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>
基金supported by the National Natural Science Foundation of China(41774006)the Comparative Study of Geo-environment and Geohazards in the Yangtze River Delta and the Red River Delta Projectthe Shanghai Science and Technology Development Foundation(20dz1201200)。
文摘Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.
基金supported by the Natural Science Foundation of China[grant number 42071453]the geological hazard investigation project of Liaoning Province[grant number 2022020700179]the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology[grant number 6142A01210407].
文摘In this paper,the Multi-Temporal Interferometric Synthetic Aperture Radar(MT-InSAR)technology is adopted to monitor the Line of Sight(LOS)displacement of Fushun West Opencast Coal Mine(FWOCM)and its surrounding areas in northeast China using Sentinel-1 Synthetic Aperture Radar(SAR)images acquired from 2018 to 2022.The spatial-temporal evolution of urban subsidence and the south-slope landslide are both analyzed in detail.Comparison with ground measurements and cross-correlation analysis via cross wavelet transform with monthly precipitation data are also conducted,to analyze the influence factors of displacements in FWOCM.The monitoring results show that a subsidence basin appeared in the urban area near the eastern part of the north slope in 2018,with settlement center located at the intersection of E3000 and fault F1.The Qian Tai Shan(QTS)landslide on the south slope,which experienced rapid sliding during 2014 to 2016,presents seasonal deceleration and acceleration with precipitation,with the maximum displacement in vicinity of the Liushan paleochannel.The results of this paper have fully taken in account for the complications of large topographic relief,geological conditions,spatial distribution and temporal evolution characteristics of surface displacements in opencast mining area.The wide range and long time series dynamic monitoring of opencast mine are of great significance to ensure mine safety production and geological disaster prevention in the investigated mining area.
文摘Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.
文摘Drone photography is an essential building block of intelligent transportation,enabling wide-ranging monitoring,precise positioning,and rapid transmission.However,the high computational cost of transformer-based methods in object detection tasks hinders real-time result transmission in drone target detection applications.Therefore,we propose mask adaptive transformer (MAT) tailored for such scenarios.Specifically,we introduce a structure that supports collaborative token sparsification in support windows,enhancing fault tolerance and reducing computational overhead.This structure comprises two modules:a binary mask strategy and adaptive window self-attention (A-WSA).The binary mask strategy focuses on significant objects in various complex scenes.The A-WSA mechanism is employed to self-attend for balance perfomance and computational cost to select objects and isolate all contextual leakage.Extensive experiments on the challenging CarPK and VisDrone datasets demonstrate the effectiveness and superiority of the proposed method.Specifically,it achieves a mean average precision (mAP@0.5) improvement of 1.25%over car detector based on you only look once version 5 (CD-YOLOv5) on the CarPK dataset and a 3.75%average precision(AP@0.5) improvement over cascaded zoom-in detector (CZ Det) on the VisDrone dataset.
基金funding from Horizon Europe Framework Programme(HORIZON),call Teaming for Excellence(HORIZON-WIDERA-2022-ACCESS-01-two-stage)-Creation of the centre of excellence in smart forestry“Forest 4.0”No.101059985funded by the EuropeanUnion under the project FOREST 4.0-“Ekscelencijos centras tvariai miško bioekonomikai vystyti”No.10-042-P-0002.
文摘Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating the adoption of advanced,automated approaches for improved forest conservation and management.This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery.A dataset of 3157 images was collected and divided into training(2528),validation(495),and testing(134)sets.To enhance model robustness and generalization,data augmentation was applied to the training part of the dataset.Various YOLO-based models,including YOLOv8,YOLOv9,YOLOv10,YOLOv11,and YOLOv12,were evaluated using different hyperparameters and optimization techniques,such as stochastic gradient descent(SGD)and auto-optimization.These models were assessed in terms of detection accuracy and the number of detected trees.The highest-performing model,YOLOv12m,achieved a mean average precision(mAP@50)of 0.908,mAP@50:95 of 0.581,recall of 0.851,precision of 0.852,and an F1-score of 0.847.The results demonstrate that YOLO-based object detection offers a highly efficient,scalable,and accurate solution for individual tree detection in satellite imagery,facilitating improved forest inventory,monitoring,and ecosystem management.This study underscores the potential of AI-driven tree detection to enhance environmental sustainability and support data-driven decision-making in forestry.
基金supported by the Natural Science Foundation of Hebei Province(F2024202019)the National Natural Science Foundation of China(32201072).
文摘A brain-computer interface(BCI)based on motor imagery(MI)provides additional control pathways by decoding the intentions of the brain.MI ability has great intra-individual variability,and the majority of MI-BCI systems are unable to adapt to this variability,leading to poor training effects.Therefore,prediction of MI ability is needed.In this study,we propose an MI ability predictor based on multi-frequency EEG features.To validate the performance of the predictor,a video-guided paradigm and a traditional MI paradigm are designed,and the predictor is applied to both paradigms.The results demonstrate that all subjects achieved>85%prediction precision in both applications,with a maximum of 96%.This study indicates that the predictor can accurately predict the individuals’MI ability in different states,provide the scientific basis for personalized training,and enhance the effect of MI-BCI training.