The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carr...The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.展开更多
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be...The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.展开更多
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc...This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.展开更多
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ...In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.展开更多
Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track a...Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.Design/methodology/approach–The track and substructure are decomposed into the rail subsystem and substructure subsystem,in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener.The rail is treated as a continuous beam with elastic discrete point supports,and spring-damping elements are used to simulate the constraints between rail and fastener.Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system,while the external load is used to deal with the reverse effect.The fastener failure is simulated with the methods that cancel the forced vibration transmission,namely take no account of the substructure–rail interaction at that position.Findings–The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method.Local fastener failure will slightly affect the vibration of substructure and carbody,but it will significantly intensify the vibration response between wheel and rail.The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value,respectively,under the train speed of 350 km$h1.At the same time,the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%,respectively,from the normal value.Originality/value–This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.展开更多
Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gu...Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.展开更多
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo...This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
The dynamic properties of rolling mill are significantly influenced by many coupling factors. According to the coupled mechanical and electric dynamics theory, the global coupled equations for the dynamic analysis of ...The dynamic properties of rolling mill are significantly influenced by many coupling factors. According to the coupled mechanical and electric dynamics theory, the global coupled equations for the dynamic analysis of planishing mill CM04 of Shanghai Baosteel Group Corporation were derived, by using finite element methods. These elasto-dynamic equations establish the coupling relations among the stand vibration system, torsional vibration system, driving motors, etc. It provides theoretical basis to a certain extent for globally dynamic simulation, analysis of stability of motion, prediction of abnormal operating mode, globally optimum design and control, etc.展开更多
The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing e^ciency and g...The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing e^ciency and generate an output power higher than the single-cavity lasers, results that are consistent with the theoretical results obtained by rate equations. In dynamic regime, the single-cavity lasers produce pulses as short as 113 ps, while the coupled-cavity lasers show a significantly longer lasing duration. These results indicate that the photonic crystal laser is a promising candidate for the light source in high-speed photonic integrated circuit.展开更多
Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs(Floating Production Storage and Offloading) suffer from the ...Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs(Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM(Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.展开更多
A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities ...A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.展开更多
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is establi...In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag...A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.展开更多
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio...Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.展开更多
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role...The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.展开更多
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To...The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.展开更多
The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotempo...The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotemporal evolution characteristics of the coupling and coordination degree of agricultural resilience and rural land use efficiency and their dynamic transfer law and driving mechanisms,based on panel data of 31 provinces(municipalities and autonomous regions)in China from 2010 to 2020.The results showed:(1)Good coupling and coordination of agricultural resilience and rural land use efficiency,with reduced temporal differentiation degrees between regions;(2)Significant spatial autocorrelation between the overall coupling and coordination degrees of agricultural resilience and rural land use efficiency,forming cold spot and hot spot spatial patterns in the western and eastern parts,respectively,with a central transition area;(3)A spillover effect of the dynamic transfer process,with a manifested specific law as"club convergence","Matthew effect",and progressive development characteristics;(4)The key roles of the natural,social,economic,and policy indicators in the coupling and coordination development process of agricultural resilience and rural land use efficiency.However,the selected indicators showed substantial spatial differences in their influences on the coupling and coordination process between provinces.展开更多
In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA)...In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.展开更多
基金National Natural Science Foundation of China(60475039)
文摘The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
基金Projects(2014QNB18,2015XKMS022)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(51475456,51575511)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Priority Academic Programme Development of Jiangsu Higher Education InstitutionsProject supported by the Visiting Scholar Foundation of China Scholarship Council
文摘The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.
基金Supported by the National Natural Science Foundation of China under Grant No.51109040
文摘This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.
基金National Natural Scienccs Foundation of China (50178005).
文摘In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.
基金funded by the Research Fund of Shanghai Bureau Group Corporation(2021142)Science Foundation of China State Railway Group Corporation Limited(P2021T013)and Science Foundation of China Academy of Railway Sciences Corporation Limited(2021YJ250).
文摘Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.Design/methodology/approach–The track and substructure are decomposed into the rail subsystem and substructure subsystem,in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener.The rail is treated as a continuous beam with elastic discrete point supports,and spring-damping elements are used to simulate the constraints between rail and fastener.Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system,while the external load is used to deal with the reverse effect.The fastener failure is simulated with the methods that cancel the forced vibration transmission,namely take no account of the substructure–rail interaction at that position.Findings–The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method.Local fastener failure will slightly affect the vibration of substructure and carbody,but it will significantly intensify the vibration response between wheel and rail.The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value,respectively,under the train speed of 350 km$h1.At the same time,the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%,respectively,from the normal value.Originality/value–This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.
文摘Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 51735012 and 11790283
文摘This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.
文摘The dynamic properties of rolling mill are significantly influenced by many coupling factors. According to the coupled mechanical and electric dynamics theory, the global coupled equations for the dynamic analysis of planishing mill CM04 of Shanghai Baosteel Group Corporation were derived, by using finite element methods. These elasto-dynamic equations establish the coupling relations among the stand vibration system, torsional vibration system, driving motors, etc. It provides theoretical basis to a certain extent for globally dynamic simulation, analysis of stability of motion, prediction of abnormal operating mode, globally optimum design and control, etc.
基金Supported by the National Key Basic Research Special Fund/CNKBRSF of China under Grant Nos 2012CB933501,2016YFA0301102,2016YFB0401804 and 2016YFB0402203the National Natural Science Foundation of China under Grant Nos61535013,61321063 and 61137003+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant Nos XDB24010100,XDB24010200,XDB24020100 and XDB24030100the One Hundred Person Project of the Chinese Academy of Sciences
文摘The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing e^ciency and generate an output power higher than the single-cavity lasers, results that are consistent with the theoretical results obtained by rate equations. In dynamic regime, the single-cavity lasers produce pulses as short as 113 ps, while the coupled-cavity lasers show a significantly longer lasing duration. These results indicate that the photonic crystal laser is a promising candidate for the light source in high-speed photonic integrated circuit.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279130 and 51479134)
文摘Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs(Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM(Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.
基金Supported by State Key Laboratory of Robotics and Systems(HIT)(SKLRS-2010-ZD-04)Capital Medical Development Scientific Research Fund(20092098)
文摘A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.
文摘In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
基金Project(50175031) supported by the National Natural Science Foundation of China
文摘A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.
基金Supported by National Natural Science Foundation of China(Grant No.51475211)
文摘Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.
基金This study was co-supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500).
文摘The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.
基金supported by the Science and Technology Commissioner Project of Zhejiang Province(2023ST04)the supporting funds for scientific research launch of Zhejiang University of Science and Technology(F701104M11).
文摘The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.
基金Natural Science Foundation of Heilongjiang,No.LH2023D019Philosophy and Social Sciences Research Program of Heilongjiang,No.21JLE323。
文摘The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotemporal evolution characteristics of the coupling and coordination degree of agricultural resilience and rural land use efficiency and their dynamic transfer law and driving mechanisms,based on panel data of 31 provinces(municipalities and autonomous regions)in China from 2010 to 2020.The results showed:(1)Good coupling and coordination of agricultural resilience and rural land use efficiency,with reduced temporal differentiation degrees between regions;(2)Significant spatial autocorrelation between the overall coupling and coordination degrees of agricultural resilience and rural land use efficiency,forming cold spot and hot spot spatial patterns in the western and eastern parts,respectively,with a central transition area;(3)A spillover effect of the dynamic transfer process,with a manifested specific law as"club convergence","Matthew effect",and progressive development characteristics;(4)The key roles of the natural,social,economic,and policy indicators in the coupling and coordination development process of agricultural resilience and rural land use efficiency.However,the selected indicators showed substantial spatial differences in their influences on the coupling and coordination process between provinces.
基金supported by the Natural Science Foundation of China under Grant No.51175423
文摘In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.