期刊文献+
共找到319篇文章
< 1 2 16 >
每页显示 20 50 100
PAL-BERT:An Improved Question Answering Model
1
作者 Wenfeng Zheng Siyu Lu +3 位作者 Zhuohang Cai Ruiyang Wang Lei Wang Lirong Yin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2729-2745,共17页
In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and comput... In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and computing power advance,the issue of increasingly larger models and a growing number of parameters has surfaced.Consequently,model training has become more costly and less efficient.To enhance the efficiency and accuracy of the training process while reducing themodel volume,this paper proposes a first-order pruningmodel PAL-BERT based on the ALBERT model according to the characteristics of question-answering(QA)system and language model.Firstly,a first-order network pruning method based on the ALBERT model is designed,and the PAL-BERT model is formed.Then,the parameter optimization strategy of the PAL-BERT model is formulated,and the Mish function was used as an activation function instead of ReLU to improve the performance.Finally,after comparison experiments with traditional deep learning models TextCNN and BiLSTM,it is confirmed that PALBERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency.Compared with traditional models,PAL-BERT significantly improves the NLP task’s performance. 展开更多
关键词 PAL-BERT question answering model pretraining language models ALBERT pruning model network pruning TextCNN BiLSTM
在线阅读 下载PDF
DPAL-BERT:A Faster and Lighter Question Answering Model
2
作者 Lirong Yin Lei Wang +8 位作者 Zhuohang Cai Siyu Lu Ruiyang Wang Ahmed AlSanad Salman A.AlQahtani Xiaobing Chen Zhengtong Yin Xiaolu Li Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期771-786,共16页
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ... Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency. 展开更多
关键词 DPAL-BERT question answering systems knowledge distillation model compression BERT Bi-directional long short-term memory(BiLSTM) knowledge information transfer PAL-BERT training efficiency natural language processing
在线阅读 下载PDF
A Dynamic Knowledge Base Updating Mechanism-Based Retrieval-Augmented Generation Framework for Intelligent Question-and-Answer Systems
3
作者 Yu Li 《Journal of Computer and Communications》 2025年第1期41-58,共18页
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati... In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries. 展开更多
关键词 Retrieval-Augmented Generation question-and-answer Large Language models Dynamic Knowledge Base Updating Mechanism Weighted Context-Aware Similarity
在线阅读 下载PDF
Question classification in question answering based on real-world web data sets
4
作者 袁晓洁 于士涛 +1 位作者 师建兴 陈秋双 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期272-275,共4页
To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,t... To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance. 展开更多
关键词 question classification question answering real-world web data sets question and answer web forums re-ranking model
在线阅读 下载PDF
ALBERT with Knowledge Graph Encoder Utilizing Semantic Similarity for Commonsense Question Answering 被引量:1
5
作者 Byeongmin Choi YongHyun Lee +1 位作者 Yeunwoong Kyung Eunchan Kim 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期71-82,共12页
Recently,pre-trained language representation models such as bidirec-tional encoder representations from transformers(BERT)have been performing well in commonsense question answering(CSQA).However,there is a problem th... Recently,pre-trained language representation models such as bidirec-tional encoder representations from transformers(BERT)have been performing well in commonsense question answering(CSQA).However,there is a problem that the models do not directly use explicit information of knowledge sources existing outside.To augment this,additional methods such as knowledge-aware graph network(KagNet)and multi-hop graph relation network(MHGRN)have been proposed.In this study,we propose to use the latest pre-trained language model a lite bidirectional encoder representations from transformers(ALBERT)with knowledge graph information extraction technique.We also propose to applying the novel method,schema graph expansion to recent language models.Then,we analyze the effect of applying knowledge graph-based knowledge extraction techniques to recent pre-trained language models and confirm that schema graph expansion is effective in some extent.Furthermore,we show that our proposed model can achieve better performance than existing KagNet and MHGRN models in CommonsenseQA dataset. 展开更多
关键词 Commonsense reasoning question answering knowledge graph language representation model
在线阅读 下载PDF
Prompting Large Language Models with Knowledge-Injection for Knowledge-Based Visual Question Answering 被引量:2
6
作者 Zhongjian Hu Peng Yang +2 位作者 Fengyuan Liu Yuan Meng Xingyu Liu 《Big Data Mining and Analytics》 EI CSCD 2024年第3期843-857,共15页
Previous works employ the Large Language Model(LLM)like GPT-3 for knowledge-based Visual Question Answering(VQA).We argue that the inferential capacity of LLM can be enhanced through knowledge injection.Although metho... Previous works employ the Large Language Model(LLM)like GPT-3 for knowledge-based Visual Question Answering(VQA).We argue that the inferential capacity of LLM can be enhanced through knowledge injection.Although methods that utilize knowledge graphs to enhance LLM have been explored in various tasks,they may have some limitations,such as the possibility of not being able to retrieve the required knowledge.In this paper,we introduce a novel framework for knowledge-based VQA titled“Prompting Large Language Models with Knowledge-Injection”(PLLMKI).We use vanilla VQA model to inspire the LLM and further enhance the LLM with knowledge injection.Unlike earlier approaches,we adopt the LLM for knowledge enhancement instead of relying on knowledge graphs.Furthermore,we leverage open LLMs,incurring no additional costs.In comparison to existing baselines,our approach exhibits the accuracy improvement of over 1.3 and 1.7 on two knowledge-based VQA datasets,namely OK-VQA and A-OKVQA,respectively. 展开更多
关键词 visual question answering knowledge-based visual question answering large language model knowledge injection
原文传递
The question answer system based on natural language understanding
7
作者 郭庆琳 樊孝忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期419-422,共4页
Automatic Question Answer System(QAS)is a kind of high-powered software system based on Internet.Its key technology is the interrelated technology based on natural language understanding,including the construction of ... Automatic Question Answer System(QAS)is a kind of high-powered software system based on Internet.Its key technology is the interrelated technology based on natural language understanding,including the construction of knowledge base and corpus,the Word Segmentation and POS Tagging of text,the Grammatical Analysis and Semantic Analysis of sentences etc.This thesis dissertated mainly the denotation of knowledge-information based on semantic network in QAS,the stochastic syntax-parse model named LSF of knowledge-information in QAS,the structure and constitution of QAS.And the LSF model's parameters were exercised,which proved that they were feasible.At the same time,through "the limited-domain QAS" which was exploited for banks by us,these technologies were proved effective and propagable. 展开更多
关键词 question answer system semantic network LSF model predicate logic
在线阅读 下载PDF
基于大模型检索增强生成的气象数据库问答模型实现 被引量:8
8
作者 江双五 张嘉玮 +1 位作者 华连生 杨菁林 《计算机工程与应用》 北大核心 2025年第5期113-121,共9页
随着信息检索和知识获取需求的增加,智能问答系统在多个垂直领域得到广泛应用。然而,在气象领域仍缺乏专门的智能问答系统研究,严重限制了气象信息的高效利用和气象系统的服务效率。针对这一需求,提出了一种面向气象数据库的大模型检索... 随着信息检索和知识获取需求的增加,智能问答系统在多个垂直领域得到广泛应用。然而,在气象领域仍缺乏专门的智能问答系统研究,严重限制了气象信息的高效利用和气象系统的服务效率。针对这一需求,提出了一种面向气象数据库的大模型检索智能问答技术实现方案。该方案设计了一种基于关系型数据库(SQL)与文档型数据(NoSQL)的多通道查询路由(multi-channel retrieval router,McRR)方法,为了适配数据库进行大模型查询以及增强大模型对查询表的理解,分别提出指令查询转换方法与数据库表摘要方法DNSUM,提升大模型对数据库的语义理解能力,通过结合问题理解、重排序器和响应生成等关键模块,构建了一个端到端的智能问答模型,可实现多数据源的相关知识检索及答案生成。实验结果显示,该模型可以有效理解用户问题并生成准确的答案,具有良好的检索和响应能力。不仅为气象领域提供了一种智能问答的解决方案,也为气象智能问答技术提供了新的应用实施参考。 展开更多
关键词 数据库查询 数据库问答 大语言模型 检索增强生成 气象问答
在线阅读 下载PDF
基于信息检索的知识库问答综述 被引量:9
9
作者 田萱 吴志超 《计算机研究与发展》 北大核心 2025年第2期314-335,共22页
知识库问答旨在从知识库中检索相关信息用于模型推理,最终返回准确的答案.近年来随着深度学习和大语言模型的发展,基于信息检索的知识库问答研究成为焦点,涌现出许多新颖方法.从模型方法、数据集等不同方面对基于信息检索的知识库问答... 知识库问答旨在从知识库中检索相关信息用于模型推理,最终返回准确的答案.近年来随着深度学习和大语言模型的发展,基于信息检索的知识库问答研究成为焦点,涌现出许多新颖方法.从模型方法、数据集等不同方面对基于信息检索的知识库问答研究进行梳理总结.首先对知识库问答的研究意义和相关定义进行介绍.然后按照模型执行过程从问句解析、信息检索、模型推理、答案生成这4个阶段阐述每个阶段面临的关键问题以及典型解决方法,对每个阶段所使用到的共性网络模块进行总结.其次针对基于信息检索的知识库问答方法的不可解释性进行分析梳理.此外,对不同特点的相关数据集和不同阶段的基线模型进行了分类介绍与总结.最后对基于信息检索的知识库问答每个执行阶段以及该领域整体发展方向进行了总结和展望. 展开更多
关键词 知识库问答 信息检索 深度学习 大语言模型 阶段性问题
在线阅读 下载PDF
基于大语言模型和RAG的持续交付智能问答系统 被引量:8
10
作者 鞠炜刚 汪鹏 王佳 《计算机技术与发展》 2025年第2期107-114,共8页
持续交付是一种持续的将各类变更快速、高质量地落实到生产环境的方法和技术,对提升产品竞争力越来越重要。因此迫切需要对持续交付进行规划、建设和应用,但其知识范围广、专业性强、更新快,难以有效及时获取指导和帮助,影响实施效果。... 持续交付是一种持续的将各类变更快速、高质量地落实到生产环境的方法和技术,对提升产品竞争力越来越重要。因此迫切需要对持续交付进行规划、建设和应用,但其知识范围广、专业性强、更新快,难以有效及时获取指导和帮助,影响实施效果。针对该问题,提出了一种基于大语言模型和检索增强生成(RAG)的持续交付智能问答系统构建方法。该方法通过高质量语料处理形成数据集,采用高效微调技术训练领域大模型,使用改进的向量知识检索并结合提示词工程的多场景提示词模板技术增强生成效果,实现了一种持续交付智能问答系统。实验结果表明,该系统对持续交付各环节的知识问答覆盖场景范围广,能有效提升回答的准确性,降低幻觉率,效果明显,从而极大帮助了持续交付的规划、实施和应用。提出的方法和技术具备很强的通用性,可以向更多领域的智能问答推广应用。 展开更多
关键词 持续交付 智能问答 大语言模型 检索增强生成 提示词工程
在线阅读 下载PDF
BEKO:大语言模型与知识图谱的双向增强 被引量:2
11
作者 吴信东 黄满宗 卜晨阳 《计算机学报》 北大核心 2025年第7期1572-1588,共17页
以ChatGPT为代表的大型语言模型(LLMs)在多种任务中展现了巨大潜力。然而,LLMs仍然面临幻觉现象和长尾知识遗忘等问题。为了解决这些问题,现有方法通过结合知识图谱等外部知识显著增强LLMs的生成能力,从而提升回答的准确性和完整性。但... 以ChatGPT为代表的大型语言模型(LLMs)在多种任务中展现了巨大潜力。然而,LLMs仍然面临幻觉现象和长尾知识遗忘等问题。为了解决这些问题,现有方法通过结合知识图谱等外部知识显著增强LLMs的生成能力,从而提升回答的准确性和完整性。但是,这些方法存在如知识图谱构建复杂、语义丢失以及知识单向流动等问题。为此,我们提出了一种双向增强框架,不仅利用知识图谱增强LLMs的生成效果,而且利用LLMs的推理结果补充知识图谱,从而形成知识的双向流动,并最终形成知识图谱与LLMs之间的循环正反馈,不断优化系统效果。此外,通过设计增强知识图谱(Enhanced Knowledge Graph,EKG),我们将关系抽取任务延迟到检索阶段,降低知识图谱的构建成本,并利用向量检索技术缓解语义丢失问题。基于此框架,本文构建了双向增强系统——BEKO(Bidirectional Enhancement with a Knowledge Ocean)系统,并在关系推理应用中相比传统方法取得明显的性能提升,验证了双向增强框架的可行性和有效性。BEKO系统目前已经部署在公开的网站——ko.zhonghuapu.com。 展开更多
关键词 知识图谱 大语言模型 检索增强生成 关系推理 知识问答
在线阅读 下载PDF
基于知识库问答的回答生成研究 被引量:1
12
作者 饶东宁 许正辉 梁瑞仕 《计算机工程》 北大核心 2025年第2期94-101,共8页
知识库问答旨在利用事先构建好的知识库来回答用户提出的问题。现有的知识库问答研究主要通过对候选实体和关系路径进行排序,最后将三元组的尾实体作为答案返回。用户给出的问题经过实体识别模型和实体消歧模型之后,可以链接到知识库中... 知识库问答旨在利用事先构建好的知识库来回答用户提出的问题。现有的知识库问答研究主要通过对候选实体和关系路径进行排序,最后将三元组的尾实体作为答案返回。用户给出的问题经过实体识别模型和实体消歧模型之后,可以链接到知识库中与答案相关的候选实体。利用语言模型的生成能力,可以将答案拓展为一句话并返回,这对用户而言是更加友好的。为了提高模型的泛化能力和弥补问题文本与结构化知识之间的差别,将候选实体及其一跳关系子图通过提示模板进行组织输入到生成模型中,并在回答模板的引导下生成通俗流畅的回答。在NLPCC 2016 CKBQA和KgCLUE两个中文数据集上的实验结果表明:该方法在BLEU、METEOR和ROUGE指标上分别平均比BART-large模型提高了2.8、2.3和1.5百分点;在Perplexity指标上,该方法与ChatGPT的回答表现相当。 展开更多
关键词 知识库问答 提示 实体链接 预训练模型 回答生成
在线阅读 下载PDF
大模型赋能的智能问答FAQ语料库建设实践与思考——以国家图书馆为例 被引量:6
13
作者 翟蓉 《四川图书馆学报》 2025年第2期80-87,共8页
文章简述了国家图书馆交互式线上咨询服务的发展历程,在介绍大模型赋能的国家图书馆智能问答系统的两大内容支撑——FAQ语料库与文档语料库的基础上,重点阐述了FAQ语料库内容的建设实践及管理与运营流程。针对系统上线运行半年多以来FA... 文章简述了国家图书馆交互式线上咨询服务的发展历程,在介绍大模型赋能的国家图书馆智能问答系统的两大内容支撑——FAQ语料库与文档语料库的基础上,重点阐述了FAQ语料库内容的建设实践及管理与运营流程。针对系统上线运行半年多以来FAQ语料库承接的问答式对话的日志和部分问题未命中的原因进行了统计分析,并从内容优化和来源拓展、建设标准的制订、大模型智能化水平优化、日常运维和多渠道复用、评价体系建设、团队建设与人才培养等维度,提出FAQ语料库建设的发展策略和建议,以期为大模型在图书馆智能问答等基础服务中的应用和发展提供参考。 展开更多
关键词 国家图书馆 智能问答 大模型 FAQ语料库 咨询服务
在线阅读 下载PDF
面向辅助用地报批的知识图谱协同构建与智能问答方法及实现 被引量:1
14
作者 陈展鹏 杜启勇 +5 位作者 胡鑫 杨学习 王天应 江一凡 尹姝彤 邹煜星 《时空信息学报》 2025年第1期94-103,共10页
持续推进用地报批业务的数字化、智能化建设是夯实自然资源“两统一”工作的重要内容。受制于对报批流程各环节复杂关联关系的认知局限,用地管理过程经常面临业务关联弱、政策查找难等问题,进而影响报批业务的工作效率和成效。本文立足... 持续推进用地报批业务的数字化、智能化建设是夯实自然资源“两统一”工作的重要内容。受制于对报批流程各环节复杂关联关系的认知局限,用地管理过程经常面临业务关联弱、政策查找难等问题,进而影响报批业务的工作效率和成效。本文立足于知识图谱与大语言模型在复杂业务中的技术互补性,提出一种面向辅助用地报批的知识图谱协同构建与智能问答技术框架,实现对用地报批业务知识的系统整合与辅助式问答;并进一步研发设计辅助用地报批智能服务平台;为评价方法的有效性,将服务平台的知识问答功能与百度搜索引擎进行比较分析。结果表明,本服务平台在为用地报批领域提供新型知识组织范式的同时,亦可在辅助决策实践中展现出显著的应用价值。研究成果可为推进用地报批领域治理能力的数字化转型与智能化升级提供可行路径。 展开更多
关键词 知识图谱 用地报批 图谱构建 信息抽取 大语言模型 智能问答 检索增强生成 辅助决策
在线阅读 下载PDF
大语言模型及其在矿物问答系统中的应用
15
作者 季晓慧 刘成健 +4 位作者 杨眉 何明跃 张招崇 曾姗 王玉柱 《矿物岩石地球化学通报》 北大核心 2025年第3期453-461,I0002,共10页
大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答对;将... 大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答对;将矿物文档经过格式转换和建立索引后转化为矿物知识库,用于检索增强大语言模型生成,问答对用于微调大语言模型。使用矿物知识库检索增强大语言模型生成时,采用先召回再精排的两级检索模式,以获得更好的大语言模型生成结果。矿物大语言模型微调采用了主流的低秩适配(Low-Rank Adaption,LoRA)方法,以较少的训练参数获得了与全参微调性能相当的效果,节省了计算资源。实验结果表明,基于检索增强生成的大语言模型的矿物问答系统能以较高的准确率快捷地获取矿物知识。 展开更多
关键词 大语言模型 矿物 检索增强生成 低秩适配 问答系统
原文传递
基于大语言模型的企业碳排放分析与知识问答系统
16
作者 韩明 曹智轩 +2 位作者 王敬涛 段丽英 王剑宏 《计算机工程与应用》 北大核心 2025年第16期370-382,共13页
随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,... 随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,开发了基于大语言模型的企业碳排放分析与知识问答系统。提出了一种多样化索引模块构建方法,构建高质量的知识与法规检索数据集。针对碳排放报告(政策)领域的知识问答任务,提出了自提示检索增强生成架构,集成意图识别、改进的结构化思维链、混合检索技术、高质量提示工程和Text2SQL系统,支持多维度分析企业可持续性报告,为企业碳排放报告(政策)提供了一种高效、精准的知识问答解决方案。通过多层分块机制、文档索引和幻觉识别功能,确保结果的准确性与可验证性,降低了LLM技术在系统中的幻觉率。通过对比实验,所提算法在各模块的协同下在检索增强生成实验中各指标表现优异,对于企业碳排放报告的关键信息抽取和报告评价,尤其是长文本处理具有明显的优势。 展开更多
关键词 大语言模型(LLM) 知识问答系统 大模型幻觉 信息检索 提示学习
在线阅读 下载PDF
大语言模型辅助情境化命题模式探索——以创造性思维测评为例
17
作者 李峰 郭嘉悦 +1 位作者 胡新雨 张佳慧 《中国考试》 北大核心 2025年第9期76-86,共11页
随着大语言模型在教育领域中的广泛应用,如何利用其提升命题质量和效率已成为重要课题。本研究基于PISA 2022创造性思维测评框架,聚焦科学问题解决,探索利用大语言模型辅助生成情境化任务的技术路径。研究以781篇科普文章为材料,采用篇... 随着大语言模型在教育领域中的广泛应用,如何利用其提升命题质量和效率已成为重要课题。本研究基于PISA 2022创造性思维测评框架,聚焦科学问题解决,探索利用大语言模型辅助生成情境化任务的技术路径。研究以781篇科普文章为材料,采用篇章映射技术与提示词工程,调用大语言模型生成题目,并经人工筛选与修订后组织实施测验。对于1156份学生作答数据和17份出声思考记录的检验分析显示,题目具有良好的区分度、拟合度与内部效度。研究表明,大语言模型可有效提升情境化命题效率,但其生成的题目仍需依赖人工审校与优化。研究结果可为区域素养测评和过程性评价中的自动化命题提供技术参考。 展开更多
关键词 创造性思维 大语言模型 情境化命题 简答题
在线阅读 下载PDF
基于大模型的服装推荐智能问答系统构建
18
作者 游小荣 李淑芳 邵红燕 《毛纺科技》 北大核心 2025年第5期87-94,共8页
为了满足用户对个性化服装推荐的需求,构建了一种基于大模型技术的服装推荐智能问答系统。首先,为提升大模型在服装推荐领域的推理能力,基于fashion-style-instruct数据集对Llama27B、Orca27B和Mistral 7B大模型进行有监督微调,生成针... 为了满足用户对个性化服装推荐的需求,构建了一种基于大模型技术的服装推荐智能问答系统。首先,为提升大模型在服装推荐领域的推理能力,基于fashion-style-instruct数据集对Llama27B、Orca27B和Mistral 7B大模型进行有监督微调,生成针对服装推荐任务的优化模型;其次,对H&M个性化时尚推荐数据集中的部分数据进行向量化处理,并引入检索增强生成技术,以提升模型的准确性与透明度;最后,基于微调和检索增强生成技术设计了一套服装推荐智能问答系统。实验结果表明,相较于未进行微调与检索增强生成技术优化的基准系统,本文所构建的系统在余弦相似度、BLEU及人工评估指标上分别提升了59.74%、103.64%、22.22%;在具体问答案例分析中,本文构建系统在个性化服装推荐智能问答的细节表现上也优于ChatGPT 3.5。本文所构建的系统在服装推荐大模型应用领域具有较高的应用价值和推广潜力。 展开更多
关键词 服装推荐 大模型 个性化 问答系统 检索增强生成
在线阅读 下载PDF
基于大模型的不动产登记智能问答方法 被引量:1
19
作者 董承玮 李云汉 +1 位作者 邢晨 刘世凡 《北京测绘》 2025年第3期253-258,共6页
为探索如何在不动产登记业务中提供智能问答服务,本文提出一种基于大语言模型的不动产政策智能问答方法,并结合不动产政策知识库与信息检索提升问答准确性。该方法首先通过搜索引擎和语义检索从政策知识库得到政策文本候选集合;然后利... 为探索如何在不动产登记业务中提供智能问答服务,本文提出一种基于大语言模型的不动产政策智能问答方法,并结合不动产政策知识库与信息检索提升问答准确性。该方法首先通过搜索引擎和语义检索从政策知识库得到政策文本候选集合;然后利用排序模型进行排序,得到与问题最相关的候选政策文本;最后基于问题、政策文本构建提示(Prompt)并输入大模型生成答案。相较于传统方法,该方法在确保答案专业性和准确性的同时,提供了更灵活、自然的自助问答服务,对构建不动产登记智慧问答系统具有一定的参考意义。 展开更多
关键词 不动产登记 智能问答 知识库 语义检索 大模型
在线阅读 下载PDF
基于视觉语言多模态的建筑施工安全智能问答模型
20
作者 王喆 黄海辰 +1 位作者 李瑞钦 魏永长 《中国安全科学学报》 北大核心 2025年第10期106-114,共9页
为提升建筑施工复杂环境下安全问题的智能化诊断水平,提出一种基于视觉语言多模态的建筑施工安全智能问答模型,构建建筑施工安全隐患图文对数据集,采用视觉编码器完成安全隐患图像的视觉编码,利用语言模型实现安全隐患问答文本的编码,... 为提升建筑施工复杂环境下安全问题的智能化诊断水平,提出一种基于视觉语言多模态的建筑施工安全智能问答模型,构建建筑施工安全隐患图文对数据集,采用视觉编码器完成安全隐患图像的视觉编码,利用语言模型实现安全隐患问答文本的编码,通过多模态特征融合模块达成图像与文本信息的有效交互;构建适配建筑施工安全隐患场景视觉问答的特定提示模板,基于矩阵低秩分解对模型微调训练,并通过多轮提示词引导模型生成精确答案。结果表明:相较于现有对比模型,建筑施工安全智能问答模型在自动评估指标、GPT-4评价和专家评价中均表现更优,生成文本的流畅性与语义相关性显著提升;消融试验进一步验证了各子模块的有效性,证实矩阵低秩分解微调和多轮推理的协同作用是模型达成最优性能的关键,且合理设置低秩矩阵的秩参数可有效避免过拟合问题。 展开更多
关键词 视觉语言 多模态 建筑施工安全 安全隐患 智能问答模型 矩阵低秩分解
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部