期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel particle swarm optimizer without velocity:Simplex-PSO 被引量:6
1
作者 肖宏峰 谭冠政 《Journal of Central South University》 SCIE EI CAS 2010年第2期349-356,共8页
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc... A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104. 展开更多
关键词 Nelder-Mead simplex method particle swarm optimizer high-dimension function optimization convergence analysis
在线阅读 下载PDF
Differentially private high-dimensional data publication via grouping and truncating techniques 被引量:4
2
作者 Ning WANG Yu GU +2 位作者 Jia XU Fangfang LI Ge YU 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第2期382-395,共14页
The count of one column for high-dimensional datasets, i.e., the number of records containing this column, has been widely used in nuinerous applications such as analyzing popular spots based on check-in location info... The count of one column for high-dimensional datasets, i.e., the number of records containing this column, has been widely used in nuinerous applications such as analyzing popular spots based on check-in location information and mining valuable items from shopping records. However, this poses a privacy threat when directly publishing this information. Differential privacy (DP), as a notable paradigm for strong privacy guarantees, is thereby adopted to publish all column counts. Prior studies have verified that truncating records or grouping columns can effectively improve the accuracy of published results. To leverage the advantages of the two techniques, we combine these studies to further boost the accuracy of published results. However, the traditional penalty function, which measures the error imported by a given pair of parameters including truncating length and group size, is so sensitive that the derived parameters deviate from the optimal parameters significantly. To output preferable parameters, we first design a smart penalty function that is less sensitive than the traditional function. Moreover, a two-phase selection method is proposed to compute these parameters efficiently, together with the improvement in accuracy. Extensive experiments on a broad spectrum of real-world datasets validate the effectiveness of our proposals. 展开更多
关键词 differential privacy high-dimensional data TRUNCATION optimization GROUPING PENALTY function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部