The human motion generation model can extract structural features from existing human motion capture data,and the generated data makes animated characters move.The 3D human motion capture sequences contain complex spa...The human motion generation model can extract structural features from existing human motion capture data,and the generated data makes animated characters move.The 3D human motion capture sequences contain complex spatial-temporal structures,and the deep learning model can fully describe the potential semantic structure of human motion.To improve the authenticity of the generated human motion sequences,we propose a multi-task motion generation model that consists of a discriminator and a generator.The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17 crucial human joints in three-freedom degrees.And target motion sequences are created with these styles by the generator.Unlike traditional related works,our model can handle multiple tasks,such as identifying styles and generating data.In addition,by extracting 17 crucial joints from 29 human joints,our model avoids data redundancy and improves the accuracy of model recognition.The experimental results show that the discriminator of the model can effectively recognize diversified movements,and the generated data can correctly fit the actual data.The combination of discriminator and generator solves the problem of low reuse rate of motion data,and the generated motion sequences are more suitable for actual movement.展开更多
A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintil...A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.展开更多
Frequency lock loops (FLL) discriminating algorithms for direct-sequence spread-spectrum are discussed. The existing algorithms can't solve the problem of data bit reversal during one pre-detection integral period....Frequency lock loops (FLL) discriminating algorithms for direct-sequence spread-spectrum are discussed. The existing algorithms can't solve the problem of data bit reversal during one pre-detection integral period. And when the initial frequency offset is large, the frequency discriminator can' t work normally. To solve these problems, a new FLL discriminating algorithm is introduced. The least-squares discriminator is used in this new algorithm. As the least-squares discriminator has a short process unit period, the correspond- ing frequency discriminating range is large. And the data bit reversal just influence one process unit period, so the least-squares discriminated result will not be affected. Compared with traditional frequency discriminator, the least-squares algorithm can effectively solve the problem of data bit reversal and can endure larger initial frequency offset.展开更多
Multipath and continuous wave (CW) interference may cause severe performance degradation of global navigation satellite system (GNSS) receivers. This paper analyzes the code tracking performance of early-minus-late po...Multipath and continuous wave (CW) interference may cause severe performance degradation of global navigation satellite system (GNSS) receivers. This paper analyzes the code tracking performance of early-minus-late power (EMLP) discriminator of GNSS receivers in the presence of multipath and CW interference. An analytical expression of the code tracking error is suggested for EMLP discriminator, and it can be used to assess the effect of multipath and CW interference. The derived expression shows that the combined effects include three components: multipath component;CW interference component and the combined component of multipath and CW interference. The effect of these components depends on some factors which can be classified into two categories: the receiving environment and the receiver parameters. Numerical results show how these factors affect the tracking performances. It is shown that the proper receiver parameters can suppress the combined effects of multipath and CW interference.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
In this paper we propose the derivation of the expressions for the non-coherent Delay Locked Loop (DLL) Discriminator Curve (DC) in the absence and presence of Multipath (MP). Also derived, are the expressions of MP t...In this paper we propose the derivation of the expressions for the non-coherent Delay Locked Loop (DLL) Discriminator Curve (DC) in the absence and presence of Multipath (MP). Also derived, are the expressions of MP tracking errors in non-coherent configuration. The proposed models are valid for all Binary Offset Carrier (BOC) modulated signals in Global Navigation Satellite Systems (GNSS) such as Global Positioning System (GPS) and Future Galileo. The non-coherent configuration is used whenever the phase of the received signal cannot be estimated and thus cannot be demodulated. Therefore, the signal must be treated in a transposed band by the non-coherent DLL. The computer implementations show that the proposed models coincide with the numerical ones.展开更多
The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator...The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.展开更多
Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-...Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-time discriminator based on charge comparison principle is designed.The reference charge signal after attenuation is compared with the deconvoluted and delayed current signal.It is found that the amplitude of delayed current signal is higher than that of the reference charge signal when rise time of the input signal is shorter than the discrimination time,thus generating gating signal and triggering DMCA(digital multi-channel analyzer) to receive the total integral charge signal.When rise time of the input signal is longer than discrimination time,DMCA remains inactivated and the corresponding total integral charge signal is abandoned.Test results show that combination of the designed rise-time discriminator and DMCA can reduce hole tailing of CdZnTe detector significantly.Energy resolution of the system is 0.98%@662 keV,and it is still excellent under high counting rates.展开更多
In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance o...In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance on manual labels.However,the currently generated self-supervised signals are either neighbor discrimination or self-discrimination,and there is no model to integrate neighbor discrimination and self-discrimination.Based on this,this paper proposes Fu-Rec that integrates neighbor-discrimination contrastive learning and self-discrimination contrastive learning,which consists of three modules:(1)neighbor-discrimination contrastive learning,(2)selfdiscrimination contrastive learning,and(3)recommendation module.The neighbor-discrimination contrastive learning and selfdiscrimination contrastive learning tasks are used as auxiliary tasks to assist the recommendation task.The Fu-Rec model effectively utilizes the respective advantages of neighbor-discrimination and self-discrimination to consider the information of the user’s neighbors as well as the user and the item itself for the recommendation,which results in better performance of the recommendation module.Experimental results on several public datasets demonstrate the effectiveness of the Fu-Rec proposed in this paper.展开更多
Recently,the technology of digital image forgery based on a generative adversarial network(GAN)has considerably improved to the extent that it is difficult to distinguish it from the original image with the naked eye ...Recently,the technology of digital image forgery based on a generative adversarial network(GAN)has considerably improved to the extent that it is difficult to distinguish it from the original image with the naked eye by compositing and editing a person’s face or a specific part with the original image.Thus,much attention has been paid to digital image forgery as a social issue.Further,document forgery through GANs can completely change the meaning and context in a document,and it is difficult to identify whether the document is forged or not,which is dangerous.Nonetheless,few studies have been conducted on document forgery and new forgery-related attacks have emerged daily.Therefore,in this study,we propose a novel convolutional neural network(CNN)forensic discriminator that can detect forged text or numeric images by GANs using CNNs,which have been widely used in image classification for many years.To strengthen the detection performance of the proposed CNN forensic discriminator,CNN was trained after image preprocessing,including salt and pepper as well asGaussian noises.Moreover,we performed CNN optimization to make existing CNN more suitable for forged text or numeric image detection,which have mainly focused on the discrimination of forged faces to date.The test evaluation results using Hangul texts and numbers showed that the accuracy of forgery discrimination of the proposed method was significantly improved by 20%in Hangul texts and 5%in numbers compared with that of existing state-of-the-art methods,which proved the proposed model performance superiority and verified that it could be a useful tool in reducing crime potential.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.Howev...Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.展开更多
Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural...Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural and blurry outpainting results in most cases.To solve this issue,we propose a perceptual image outpainting method,which effectively takes the advantage of low-level feature fusion and multi-patch discriminator.Specifically,we first fuse the texture information in the low-level feature map of encoder,and simultaneously incorporate these aggregated features reusability with semantic(or structural)information of deep feature map such that we could utilizemore sophisticated texture information to generate more authentic outpainting images.Then we also introduce a multi-patch discriminator to enhance the generated texture,which effectively judges the generated image from the different level features and concurrently impels our network to produce more natural and clearer outpainting results.Moreover,we further introduce perceptual loss and style loss to effectively improve the texture and style of outpainting images.Compared with the existing methods,our method could produce finer outpainting results.Experimental results on Places2 and Paris StreetView datasets illustrated the effectiveness of our method for image outpainting.展开更多
Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof ...Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof different types of features and domain shift problems are two of the critical issues in zero-shot learning. Toaddress both of these issues, this paper proposes a new modeling structure. The traditional approach mappedsemantic features and visual features into the same feature space;based on this, a dual discriminator approachis used in the proposed model. This dual discriminator approach can further enhance the consistency betweensemantic and visual features. At the same time, this approach can also align unseen class semantic features andtraining set samples, providing a portion of information about the unseen classes. In addition, a new feature fusionmethod is proposed in the model. This method is equivalent to adding perturbation to the seen class features,which can reduce the degree to which the classification results in the model are biased towards the seen classes.At the same time, this feature fusion method can provide part of the information of the unseen classes, improvingits classification accuracy in generalized zero-shot learning and reducing domain bias. The proposed method isvalidated and compared with othermethods on four datasets, and fromthe experimental results, it can be seen thatthe method proposed in this paper achieves promising results.展开更多
Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the t...Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the target class, this paper introduces an oblique projection algorithm to determine the coefficients of a KND so that it is extended to a new version called extended KND (eKND). In eKND construction, the desired output vector of the target class is obliquely projected onto the relevant subspace along the subspace related to other classes. In addition, a simple technique is proposed to calculate the associated oblique projection operator. Experimental results on handwritten digit recognition show that the algorithm performes better than a KND classifier and some other commonly used classifiers.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches...The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.展开更多
Many organizations persist in working with others that engage in known,remediable structural discrimination.We name this practice interorganizational structural discrimination(ISD)and argue it is a pivotal contributor...Many organizations persist in working with others that engage in known,remediable structural discrimination.We name this practice interorganizational structural discrimination(ISD)and argue it is a pivotal contributor to inequities in science and medicine.We urge organizations to leverage their relationships and demand progress from collaborators.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
文摘The human motion generation model can extract structural features from existing human motion capture data,and the generated data makes animated characters move.The 3D human motion capture sequences contain complex spatial-temporal structures,and the deep learning model can fully describe the potential semantic structure of human motion.To improve the authenticity of the generated human motion sequences,we propose a multi-task motion generation model that consists of a discriminator and a generator.The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17 crucial human joints in three-freedom degrees.And target motion sequences are created with these styles by the generator.Unlike traditional related works,our model can handle multiple tasks,such as identifying styles and generating data.In addition,by extracting 17 crucial joints from 29 human joints,our model avoids data redundancy and improves the accuracy of model recognition.The experimental results show that the discriminator of the model can effectively recognize diversified movements,and the generated data can correctly fit the actual data.The combination of discriminator and generator solves the problem of low reuse rate of motion data,and the generated motion sequences are more suitable for actual movement.
基金partially supported by the National Science and Technology Major Project of Ministry of Science and Technology of China (Grant Nos. 2014GB109003 and 2015GB111002)National Natural Science Foundation of China (Grant Nos. 11375195, 11575184, 11375004 and 11775068)
文摘A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.
文摘Frequency lock loops (FLL) discriminating algorithms for direct-sequence spread-spectrum are discussed. The existing algorithms can't solve the problem of data bit reversal during one pre-detection integral period. And when the initial frequency offset is large, the frequency discriminator can' t work normally. To solve these problems, a new FLL discriminating algorithm is introduced. The least-squares discriminator is used in this new algorithm. As the least-squares discriminator has a short process unit period, the correspond- ing frequency discriminating range is large. And the data bit reversal just influence one process unit period, so the least-squares discriminated result will not be affected. Compared with traditional frequency discriminator, the least-squares algorithm can effectively solve the problem of data bit reversal and can endure larger initial frequency offset.
文摘Multipath and continuous wave (CW) interference may cause severe performance degradation of global navigation satellite system (GNSS) receivers. This paper analyzes the code tracking performance of early-minus-late power (EMLP) discriminator of GNSS receivers in the presence of multipath and CW interference. An analytical expression of the code tracking error is suggested for EMLP discriminator, and it can be used to assess the effect of multipath and CW interference. The derived expression shows that the combined effects include three components: multipath component;CW interference component and the combined component of multipath and CW interference. The effect of these components depends on some factors which can be classified into two categories: the receiving environment and the receiver parameters. Numerical results show how these factors affect the tracking performances. It is shown that the proper receiver parameters can suppress the combined effects of multipath and CW interference.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
文摘In this paper we propose the derivation of the expressions for the non-coherent Delay Locked Loop (DLL) Discriminator Curve (DC) in the absence and presence of Multipath (MP). Also derived, are the expressions of MP tracking errors in non-coherent configuration. The proposed models are valid for all Binary Offset Carrier (BOC) modulated signals in Global Navigation Satellite Systems (GNSS) such as Global Positioning System (GPS) and Future Galileo. The non-coherent configuration is used whenever the phase of the received signal cannot be estimated and thus cannot be demodulated. Therefore, the signal must be treated in a transposed band by the non-coherent DLL. The computer implementations show that the proposed models coincide with the numerical ones.
文摘The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.
基金supported by the Natural Science Foundation of China(NSFC)(No.41474159)National High-tech R&D Program of China(863 Program)(Nos.2012AA061803 and 2014AA093403)Open Foundation of Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan Province(No.gnzds2014006)
文摘Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-time discriminator based on charge comparison principle is designed.The reference charge signal after attenuation is compared with the deconvoluted and delayed current signal.It is found that the amplitude of delayed current signal is higher than that of the reference charge signal when rise time of the input signal is shorter than the discrimination time,thus generating gating signal and triggering DMCA(digital multi-channel analyzer) to receive the total integral charge signal.When rise time of the input signal is longer than discrimination time,DMCA remains inactivated and the corresponding total integral charge signal is abandoned.Test results show that combination of the designed rise-time discriminator and DMCA can reduce hole tailing of CdZnTe detector significantly.Energy resolution of the system is 0.98%@662 keV,and it is still excellent under high counting rates.
基金Supported by the Scientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence(2020AAA0109300)Science and Technology Commission of Shanghai Municipality(21DZ2203100)2023 Anhui Province Key Research and Development Plan Project-Special Project of Science and Technology Cooperation(2023i11020002)。
文摘In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance on manual labels.However,the currently generated self-supervised signals are either neighbor discrimination or self-discrimination,and there is no model to integrate neighbor discrimination and self-discrimination.Based on this,this paper proposes Fu-Rec that integrates neighbor-discrimination contrastive learning and self-discrimination contrastive learning,which consists of three modules:(1)neighbor-discrimination contrastive learning,(2)selfdiscrimination contrastive learning,and(3)recommendation module.The neighbor-discrimination contrastive learning and selfdiscrimination contrastive learning tasks are used as auxiliary tasks to assist the recommendation task.The Fu-Rec model effectively utilizes the respective advantages of neighbor-discrimination and self-discrimination to consider the information of the user’s neighbors as well as the user and the item itself for the recommendation,which results in better performance of the recommendation module.Experimental results on several public datasets demonstrate the effectiveness of the Fu-Rec proposed in this paper.
基金This research was funded by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MOE)(No.2021R1I1A3055973)the Soonchunhyang University Research Fund。
文摘Recently,the technology of digital image forgery based on a generative adversarial network(GAN)has considerably improved to the extent that it is difficult to distinguish it from the original image with the naked eye by compositing and editing a person’s face or a specific part with the original image.Thus,much attention has been paid to digital image forgery as a social issue.Further,document forgery through GANs can completely change the meaning and context in a document,and it is difficult to identify whether the document is forged or not,which is dangerous.Nonetheless,few studies have been conducted on document forgery and new forgery-related attacks have emerged daily.Therefore,in this study,we propose a novel convolutional neural network(CNN)forensic discriminator that can detect forged text or numeric images by GANs using CNNs,which have been widely used in image classification for many years.To strengthen the detection performance of the proposed CNN forensic discriminator,CNN was trained after image preprocessing,including salt and pepper as well asGaussian noises.Moreover,we performed CNN optimization to make existing CNN more suitable for forged text or numeric image detection,which have mainly focused on the discrimination of forged faces to date.The test evaluation results using Hangul texts and numbers showed that the accuracy of forgery discrimination of the proposed method was significantly improved by 20%in Hangul texts and 5%in numbers compared with that of existing state-of-the-art methods,which proved the proposed model performance superiority and verified that it could be a useful tool in reducing crime potential.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the Key R&D Program of Shaanxi Province,China(Grant Nos.2022GY-274,2023-YBSF-505)the National Natural Science Foundation of China(Grant No.62273273).
文摘Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.
基金This work was supported by the Sichuan Science and Technology program(2019JDJQ0002,2019YFG0496,2021016,2020JDTD0020)partially supported by National Science Foundation of China 42075142.
文摘Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural and blurry outpainting results in most cases.To solve this issue,we propose a perceptual image outpainting method,which effectively takes the advantage of low-level feature fusion and multi-patch discriminator.Specifically,we first fuse the texture information in the low-level feature map of encoder,and simultaneously incorporate these aggregated features reusability with semantic(or structural)information of deep feature map such that we could utilizemore sophisticated texture information to generate more authentic outpainting images.Then we also introduce a multi-patch discriminator to enhance the generated texture,which effectively judges the generated image from the different level features and concurrently impels our network to produce more natural and clearer outpainting results.Moreover,we further introduce perceptual loss and style loss to effectively improve the texture and style of outpainting images.Compared with the existing methods,our method could produce finer outpainting results.Experimental results on Places2 and Paris StreetView datasets illustrated the effectiveness of our method for image outpainting.
文摘Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof different types of features and domain shift problems are two of the critical issues in zero-shot learning. Toaddress both of these issues, this paper proposes a new modeling structure. The traditional approach mappedsemantic features and visual features into the same feature space;based on this, a dual discriminator approachis used in the proposed model. This dual discriminator approach can further enhance the consistency betweensemantic and visual features. At the same time, this approach can also align unseen class semantic features andtraining set samples, providing a portion of information about the unseen classes. In addition, a new feature fusionmethod is proposed in the model. This method is equivalent to adding perturbation to the seen class features,which can reduce the degree to which the classification results in the model are biased towards the seen classes.At the same time, this feature fusion method can provide part of the information of the unseen classes, improvingits classification accuracy in generalized zero-shot learning and reducing domain bias. The proposed method isvalidated and compared with othermethods on four datasets, and fromthe experimental results, it can be seen thatthe method proposed in this paper achieves promising results.
基金Supported by the key project of Chinese Ministry of Education(No.1051150)
文摘Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the target class, this paper introduces an oblique projection algorithm to determine the coefficients of a KND so that it is extended to a new version called extended KND (eKND). In eKND construction, the desired output vector of the target class is obliquely projected onto the relevant subspace along the subspace related to other classes. In addition, a simple technique is proposed to calculate the associated oblique projection operator. Experimental results on handwritten digit recognition show that the algorithm performes better than a KND classifier and some other commonly used classifiers.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
基金supported by the research on key technologies for monitoring and identifying drug abuse of anesthetic drugs and psychotropic drugs,and intervention for addiction(No.2023YFC3304200)the program of a study on the diagnosis of addiction to synthetic cannabinoids and methods of assessing the risk of abuse(No.2022YFC3300905)+1 种基金the program of Ab initio design and generation of AI models for small molecule ligands based on target structures(No.2022PE0AC03)ZHIJIANG LAB.
文摘The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.
文摘Many organizations persist in working with others that engage in known,remediable structural discrimination.We name this practice interorganizational structural discrimination(ISD)and argue it is a pivotal contributor to inequities in science and medicine.We urge organizations to leverage their relationships and demand progress from collaborators.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.