期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
A Detection Method of Bolts on Axlebox Cover Based on Cascade Deep Convolutional Neural Network
1
作者 Ji Wang Liming Li +5 位作者 Shubin Zheng Shuguang Zhao Xiaodong Chai Lele Peng Weiwei Qi Qianqian Tong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1671-1706,共36页
This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image fe... This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened. 展开更多
关键词 Loosening detection cascade deep convolutional neural network object localization saliency detection
在线阅读 下载PDF
All-optical computing based on convolutional neural networks 被引量:10
2
作者 Kun Liao Ye Chen +7 位作者 Zhongcheng Yu Xiaoyong Hu Xingyuan Wang Cuicui Lu Hongtao Lin Qingyang Du Juejun Hu Qihuang Gong 《Opto-Electronic Advances》 SCIE 2021年第11期46-54,共9页
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi... The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing. 展开更多
关键词 convolutional neural networks all-optical computing mathematical operations cascaded silicon waveguides
在线阅读 下载PDF
Defect Detection Algorithm of Patterned Fabrics Based on Convolutional Neural Network 被引量:1
3
作者 XU Yang FEI Libin +1 位作者 YU Zhiqi SHENG Xiaowei 《Journal of Donghua University(English Edition)》 CAS 2021年第1期36-42,共7页
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly... The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory. 展开更多
关键词 patterned fabrics defect detection convolutional neural network(CNN) multi-scale model cascade network
在线阅读 下载PDF
Progressive Layered Extraction Network Based on Correlation Sharing for Multi-target Prediction of Soil Nutrients
4
作者 Tielong SU Xuesong TIAN Zhengguang CHEN 《Agricultural Biotechnology》 2025年第5期34-37,41,共5页
With breakthroughs in data processing and pattern recognition through deep learning technologies,the use of advanced algorithmic models for analyzing and interpreting soil spectral information has provided an efficien... With breakthroughs in data processing and pattern recognition through deep learning technologies,the use of advanced algorithmic models for analyzing and interpreting soil spectral information has provided an efficient and economical method for soil quality assessment.However,traditional single-output networks exhibit limitations in the prediction process,particularly in their inability to fully utilize the correlations among various elements.As a result,single-output networks tend to be optimized for a single task,neglecting the interrelationships among different soil elements,which limits prediction accuracy and model generalizability.To overcome this limitation,in this study,a multi-task learning architecture with a progressive extraction network was implemented for the simultaneous prediction of multiple indicators in soil,including nitrogen(N),organic carbon(OC),calcium carbonate(CaCO 3),cation exchange capacity(CEC),and pH.Furthermore,while incorporating the Pearson correlation coefficient,convolutional neural networks,long short-term memory networks and attention mechanisms were combined to extract local abstract features from the original spectra,thereby further improving the model.This architecture is referred to as the Relevance-sharing Progressive Layered Extraction Network.The model employs an adaptive joint loss optimization method to update the weights of individual task losses in the multi-task learning training process. 展开更多
关键词 Near-infrared spectroscopy Progressive extraction network multi-task learning convolutional neural network Long short-term memory network Attention mechanism
在线阅读 下载PDF
基于改进的Cascade RCNN铸管字符检测算法 被引量:1
5
作者 王宇 徐福丽 +5 位作者 王怀震 崔勇 姜岩 陶晔 王译笙 张琦 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3954-3966,共13页
由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,... 由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,提出融合小目标增强的特征金字塔(STE-FPN),利用多尺度特征融合的特征增强能力丰富铸管小目标字符的特征信息。其次引入自矫正/池化的ResNeSt(SCP-ResNeSt)作为特征提取网络,利用自矫正卷积和池化操作以提升背景复杂的铸管字符特征提取效率。最后对级联结构进行改进,引进Mask分支结构,可以自适应地检测字符区域并去除干扰区域,优化了检测结果。将改进后的算法在铸管数据集上进行测试,其平均检测精度mAP为99.1%,比原Cascade RCNN算法提高了2.3%,得到的精度表明改进后的性能优于原算法。 展开更多
关键词 铸管字符检测 背景模糊 cascade RCNN ResNeSt
在线阅读 下载PDF
Inner Cascaded U^(2)-Net:An Improvement to Plain Cascaded U-Net 被引量:1
6
作者 Wenbin Wu Guanjun Liu +1 位作者 Kaiyi Liang Hui Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1323-1335,共13页
Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning du... Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning due to a symmetricalU-structure for better feature extraction and fusing and suitable for small datasets.To enhance the segmentation performance of U-Net,cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine.However,the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one.In this article,we devise novel Inner Cascaded U-Net and Inner Cascaded U^(2)-Net as improvements to plain cascaded U-Net for medical image segmentation.The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information.To further boost segmentation performance,we propose Inner Cascaded U^(2)-Net,which applies residual U-block to capture more global contextual information from different scales.The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge(BraTS)2013 and ISBI Liver Tumor Segmentation Challenge(LiTS)dataset in comparison to related U-Net,cascaded U-Net,U-Net++,U^(2)-Net and state-of-the-art methods.Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U^(2)-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation. 展开更多
关键词 Deep neural networks medical image segmentation U-Net cascaded convolution block
在线阅读 下载PDF
Design of Network Cascade Structure for Image Super-Resolution 被引量:3
7
作者 Jianwei Zhang Zhenxing Wang +1 位作者 Yuhui Zheng Guoqing Zhang 《Journal of New Media》 2021年第1期29-39,共11页
Image super resolution is an important field of computer research.The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image,and then use it for image res... Image super resolution is an important field of computer research.The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image,and then use it for image restoration.However,most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images.In order to utilize the information of images at different scales,we design a cascade network structure and cascaded super-resolution convolutional neural networks.This network contains three cascaded FSRCNNs.Due to each sub FSRCNN can process a specific scale image,our network can simultaneously exploit three scale images,and can also use the information of three different scales of images.Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR. 展开更多
关键词 SUPER-RESOLUTION cascade structure convolutional neural network
在线阅读 下载PDF
Hierarchical Digital Modulation Classification Using Cascaded Convolutional Neural Network 被引量:1
8
作者 Juanjuan Huang Sai Huang +3 位作者 Yuqi Zeng Hao Chen Shuo Chang Yifan Zhang 《Journal of Communications and Information Networks》 CSCD 2021年第1期72-81,共10页
Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded conv... Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded convolutional neural network(CasCNN)-based hierarchical digital modulation classification scheme,where M-ary phase shift keying(PSK)and M-ary quadrature amplitude modulation(QAM)modulation formats are considered to be classified.In CasCNN,two-block convolutional neural networks are cascaded.The first block network is utilized to classify the different classes of modulation formats,namely PSK and QAM.The second block is designed to identify the indexes of the modulations in the same PSK or QAM class.Moreover,it is noted that the gird constellation diagram extracted from the received signal is utilized as the inputs to the CasCNN.Extensive simulations demonstrate that CasCNN yields performance gain and performs stronger robustness to frequency offset compared with other recent methods.Specifically,CasCNN achieves 90%classification accuracy at 4 dB signal-to-noise ratio when the symbol length is set as 256. 展开更多
关键词 automatic modulation classification cascaded network convolutional neural network deep learning hierarchical classification
原文传递
Research on Facial Expression Capture Based on Two-Stage Neural Network
9
作者 Zhenzhou Wang Shao Cui +1 位作者 Xiang Wang JiaFeng Tian 《Computers, Materials & Continua》 SCIE EI 2022年第9期4709-4725,共17页
To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by exist... To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by existing strategies have the problem of deviations and low accuracy.Therefore,a method for facial expression capture based on two-stage neural network is proposed in this paper which takes advantage of improved multi-task cascaded convolutional networks(MTCNN)and high-resolution network.Firstly,the convolution operation of traditional MTCNN is improved.The face information in the input image is quickly filtered by feature fusion in the first stage and Octave Convolution instead of the original ones is introduced into in the second stage to enhance the feature extraction ability of the network,which further rejects a large number of false candidates.The model outputs more accurate facial candidate windows for better landmarks recognition and locates the faces.Then the images cropped after face detection are input into high-resolution network.Multi-scale feature fusion is realized by parallel connection of multi-resolution streams,and rich high-resolution heatmaps of facial landmarks are obtained.Finally,the changes of facial landmarks recognized are tracked in real-time.The expression parameters are extracted and transmitted to Unity3D engine to drive the virtual character’s face,which can realize facial expression synchronous animation.Extensive experimental results obtained on the WFLW database demonstrate the superiority of the proposed method in terms of accuracy and robustness,especially for diverse expressions and complex background.The method can accurately capture facial expression and generate three-dimensional animation effects,making online entertainment and social interaction more immersive in shared virtual space. 展开更多
关键词 Facial expression capture facial landmarks multi-task cascaded convolutional networks high-resolution network animation generation
在线阅读 下载PDF
Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks 被引量:8
10
作者 Xi-Jin Zhang Yi-Fan Lu Song-Hai Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第3期489-500,共12页
In this paper, we proposed a multi-task system that can identify dish types, food ingredients, and cooking methods from food images with deep convolutional neural networks. We built up a dataset of 360 classes of diff... In this paper, we proposed a multi-task system that can identify dish types, food ingredients, and cooking methods from food images with deep convolutional neural networks. We built up a dataset of 360 classes of different foods with at least 500 images for each class. To reduce the noises of the data, which was collected from the Internet, outlier images were detected and eliminated through a one-class SVM trained with deep convolutional features. We simultaneously trained a dish identifier, a cooking method recognizer, and a multi-label ingredient detector. They share a few low-level layers in the deep network architecture. The proposed framework shows higher accuracy than traditional method with handcrafted features, and the cooking method recognizer and ingredient detector can be applied to dishes which are not included in the training dataset to provide reference information for users. 展开更多
关键词 multi-task learning convolutional neural network food recognition machine learning
原文传递
基于物理信息嵌入的非固定长度电力系统暂态稳定快速评估
11
作者 李湘 陈思远 +3 位作者 张俊 柯德平 高杰迈 杨欢欢 《上海交通大学学报》 北大核心 2025年第7期962-970,I0002,共10页
在双碳目标下,构建以新能源为主体的新型电力系统是实现电力工业转型升级的主要方向和关键途径,新型电力系统背景下快速准确的暂态功角稳定评估研究具有重要意义.为此,基于物理信息嵌入序列到序列(PI-seq2seq)神经网络与级联卷积神经网... 在双碳目标下,构建以新能源为主体的新型电力系统是实现电力工业转型升级的主要方向和关键途径,新型电力系统背景下快速准确的暂态功角稳定评估研究具有重要意义.为此,基于物理信息嵌入序列到序列(PI-seq2seq)神经网络与级联卷积神经网络模型提出一种含构网型新能源的新型电力系统暂态功角稳定评估方法.首先,采用PI-seq2seq网络结构预测未来功角轨迹,通过构造含物理损失项的损失函数引导模型训练过程,避免时域仿真耗时过长影响快速暂态评估.其次,级联卷积神经网络以预测的功角轨迹作为输入评估暂态稳定情况及其置信度,并配置评估置信度阈值判断机制以实现非固定评估长度的暂态稳定判断,克服了固定功角曲线长度对评估结果的影响.最后,在Kundur系统中进行验证,仿真结果表明:所提方法在功角曲线预测与稳定评估方法均获得令人满意的结果. 展开更多
关键词 构网型新能源 物理信息嵌入序列到序列神经网络 功角轨迹预测 级联卷积神经网络 暂态功角稳定评估
在线阅读 下载PDF
基于改进Cascade R-CNN的两阶段销钉缺陷检测模型 被引量:6
12
作者 王红星 翟学锋 +3 位作者 陈玉权 黄郑 黄祥 高小伟 《科学技术与工程》 北大核心 2021年第15期6373-6379,共7页
无人机在输电线路巡检过程中会拍摄大量图片,自动识别无人机拍摄图片中存在的部件缺陷是无人机巡检的重要环节。其中销钉的缺陷由于目标较小且需要依赖上下文信息才能正确判断,识别难度较大。针对上述问题,提出了一种两阶段的销钉缺陷... 无人机在输电线路巡检过程中会拍摄大量图片,自动识别无人机拍摄图片中存在的部件缺陷是无人机巡检的重要环节。其中销钉的缺陷由于目标较小且需要依赖上下文信息才能正确判断,识别难度较大。针对上述问题,提出了一种两阶段的销钉缺陷检测模型。首先使用Faster R-CNN(regin convolutional neural networks)模型提取出原始图像中的连接部位,再对提取出的每个连接部位进行缺陷识别。缺陷识别模型使用改进的Cascade R-CNN,该模型使用层级残差卷积模块代替骨干网络中的3×3卷积并使用路径聚合特征金字塔(PAFPN)代替原始网络中的特征金字塔结构,能够有效提取图片中的多尺度特征和上下文信息。最后将级联检测器的最后一级替换为double-head检测器,减少模型误报。实验结果表明,模型对销钉缺失及销钉脱出两类缺陷的平均识别精度能够达到81.2%,与原始的Cascade R-CNN相比提升了7.8%。 展开更多
关键词 无人机巡检 销钉缺陷 目标检测 深度学习 cascade R-CNN
在线阅读 下载PDF
改进YOLOv8n的林业害虫检测方法 被引量:3
13
作者 陈万志 袁航 《北京林业大学学报》 北大核心 2025年第2期119-131,共13页
【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复... 【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复杂度,提高检测速度;其次,通过构建多尺度自适应特征融合模块DA-C2F提升模型在复杂背景下害虫目标的聚焦能力和识别精度,此外新增的小目标检测头XSH能够进一步提升小目标害虫的检测能力;最后,采用基于最小点距离交并比损失函数MPDIoU作为模型的边界框损失,提升网络收敛速度,进一步增强害虫目标的定位准确率。【结果】改进模型的检测精确率、召回率、平均精度、平均精度均值(mAP50-95)和F_(1)分数分别达到98.6%、95.7%、98.3%、85.6%和0.979,前4者较原模型分别提升了3.9、2.6、2.8、2.5个百分点,F_(1)分数提升了4.4%;检测速度(帧率)达到了95帧/秒,提升了15.9%,优于更轻量级的模型。此外,对比其他检测模型,改进模型对飞蛾类害虫的检测精确率提升了11.2个百分点,并且两种独立飞蛾害虫综合检测的表现也更为优异。【结论】本研究提出的方法对于林业害虫的检测准确度更高,检测速度更快,且对多类别害虫的检测精度更高,改进模型的泛化能力更强。 展开更多
关键词 深度学习 卷积神经网络(CNN) 林业害虫检测 YOLOv8n 多尺度级联注意力特征提取网络 多尺度自适应特征融合 小目标检测头
在线阅读 下载PDF
基于计算机视觉的课堂情况分析系统
14
作者 王永强 罗洪叶 赵贤 《自动化与信息工程》 2025年第5期47-53,共7页
针对当前高校班级人数较多、考勤易作弊、教师难以及时掌握每个学生的学习状态等问题,提出一种基于计算机视觉的课堂情况分析系统。该系统利用多任务级联卷积神经网络(MTCNN)对摄像头获取的班级学生实时视频流进行人脸检测,通过Face Rec... 针对当前高校班级人数较多、考勤易作弊、教师难以及时掌握每个学生的学习状态等问题,提出一种基于计算机视觉的课堂情况分析系统。该系统利用多任务级联卷积神经网络(MTCNN)对摄像头获取的班级学生实时视频流进行人脸检测,通过Face Recognition模型提取人脸面部特征,以验证学生身份;采用关键点检测算法和YOLOv10目标检测算法分别检测学生在课堂上的打瞌睡和玩手机行为;引入动态阈值和状态保持机制,避免瞬时行为误判,并对打瞌睡、玩手机行为的阈值进行动态调整。测试结果表明,该系统能够准确完成学生考勤管理、异常行为检测、考勤结果可视化展示、课堂情况分析报告自动生成等功能,帮助教师实时掌握学生在课堂上的学习状态,及时调整教学策略,从而提升教学质量。 展开更多
关键词 计算机视觉 课堂情况分析 人脸识别 异常行为检测 动态阈值 YOLOv10 多任务级联卷积神经网络
在线阅读 下载PDF
基于CascadeR-CNN算法的输电线路小目标缺陷检测方法 被引量:28
15
作者 吴军 白梁军 +4 位作者 董晓虎 潘尚智 金哲 范亮 程绳 《电网与清洁能源》 北大核心 2022年第4期19-27,36,共10页
输电线路无人机航拍图像缺陷识别是维护线路安全运行的重要巡检手段,但目前的识别算法对于销钉、螺母等小目标缺陷存在识别精确度低、易漏判等问题。将Cascade RCNN算法应用于输电线路缺陷检测中,利用ResNet101网络进行特性提取,增强的... 输电线路无人机航拍图像缺陷识别是维护线路安全运行的重要巡检手段,但目前的识别算法对于销钉、螺母等小目标缺陷存在识别精确度低、易漏判等问题。将Cascade RCNN算法应用于输电线路缺陷检测中,利用ResNet101网络进行特性提取,增强的网络的特征提取能力,并利用多层级联检测器对输电线路小目标进行判别和分类。基于无人机航拍图像数据集进行实验,实验结果表明,相比于Yolov3检测器和Lighthead R-CNN检测器,Cascade R-CNN算法提高了小目标缺陷检测中的召回率和精确度。 展开更多
关键词 cascade R-CNN网络 输电线路 缺陷检测 卷积神经网络
在线阅读 下载PDF
Multi-task Learning of Semantic Segmentation and Height Estimation for Multi-modal Remote Sensing Images 被引量:3
16
作者 Mengyu WANG Zhiyuan YAN +2 位作者 Yingchao FENG Wenhui DIAO Xian SUN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期27-39,共13页
Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively u... Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation. 展开更多
关键词 MULTI-MODAL multi-task semantic segmentation height estimation convolutional neural network
在线阅读 下载PDF
基于改进Cascade R-CNN网络模型的防振锤缺陷识别 被引量:2
17
作者 程汪刘 任仰勋 +2 位作者 倪修峰 曹成功 张可 《安徽大学学报(自然科学版)》 CAS 北大核心 2022年第5期64-70,共7页
针对高压输电线路中防振锤的背景复杂、缺陷目标小及类别数量不均衡问题,提出一种改进的Cascade R-CNN(cascade region convolutional neural networks)网络模型,用于防振锤的缺陷识别.将SE(squeeze and excitation)模块嵌入ResNet-101(... 针对高压输电线路中防振锤的背景复杂、缺陷目标小及类别数量不均衡问题,提出一种改进的Cascade R-CNN(cascade region convolutional neural networks)网络模型,用于防振锤的缺陷识别.将SE(squeeze and excitation)模块嵌入ResNet-101(residual network-101),以增强网络学习能力.引入FPN(feature pyramid networks)模块提取多尺度的缺陷特征.利用Focal Loss函数降低Cascade R-CNN候选区域提取模块的分类损失.实验结果表明:相对于其他4种模型,该文模型有相对高的识别准确率;识别防振锤缺陷的效果良好.因此,该文模型具有有效性. 展开更多
关键词 电力巡检 深度学习 缺陷识别 防振锤 cascade R-CNN
在线阅读 下载PDF
改进YOLOv5的织物缺陷检测方法 被引量:4
18
作者 朱磊 王倩倩 +2 位作者 姚丽娜 潘杨 张博 《计算机工程与应用》 CSCD 北大核心 2024年第20期302-311,共10页
为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络... 为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络,从而提高网络对缺陷区域纹理和语义特征的提取能力;采用鬼影混洗卷积改进特征融合子网络,强化对提取特征的筛选,在降低模型参数量的同时,改善缺陷信息丢失和无效信息冗余问题;在检测端引入具有角度损失的新型损失函数SIOU,来促进真实框和预测框的拟合并提升对缺陷预测的准确性。实验结果表明:改进的YOLOv5方法在降低YOLOv5基准模型复杂度和计算量的同时,与YOLOv7等六种先进方法相比,可获得更高的检测精度,相较原模型mAP@0.5值提高了2.6个百分点,mAP@0.5:0.9值提高了1.3个百分点。 展开更多
关键词 织物缺陷检测 卷积神经网络 YOLOv5 双级联注意力机制 损失函数
在线阅读 下载PDF
A General Linguistic Steganalysis Framework Using Multi-Task Learning
19
作者 Lingyun Xiang Rong Wang +2 位作者 Yuhang Liu Yangfan Liu Lina Tan 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2383-2399,共17页
Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While i... Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While it remains an unsolved problem and poses a significant threat to the security of cyberspace when various categories of non-steganographic or steganographic texts coexist.In this paper,we propose a general linguistic steganalysis framework named LS-MTL,which introduces the idea of multi-task learning to deal with the classification of various categories of steganographic and non-steganographic texts.LS-MTL captures sensitive linguistic features from multiple related linguistic steganalysis tasks and can concurrently handle diverse tasks with a constructed model.In the proposed framework,convolutional neural networks(CNNs)are utilized as private base models to extract sensitive features for each steganalysis task.Besides,a shared CNN is built to capture potential interaction information and share linguistic features among all tasks.Finally,LS-MTL incorporates the private and shared sensitive features to identify the detected text as steganographic or non-steganographic.Experimental results demonstrate that the proposed framework LS-MTL outperforms the baseline in the multi-category linguistic steganalysis task,while average Acc,Pre,and Rec are increased by 0.5%,1.4%,and 0.4%,respectively.More ablation experimental results show that LS-MTL with the shared module has robust generalization capability and achieves good detection performance even in the case of spare data. 展开更多
关键词 Linguistic steganalysis multi-task learning convolutional neural network(CNN) feature extraction detection performance
在线阅读 下载PDF
融合CNN与Transformer的MRI脑肿瘤图像分割 被引量:6
20
作者 刘万军 姜岚 +2 位作者 曲海成 王晓娜 崔衡 《智能系统学报》 CSCD 北大核心 2024年第4期1007-1015,共9页
为解决卷积神经网络(convolutional neural network,CNN)在学习全局上下文信息和边缘细节方面受到很大限制的问题,提出一种同时学习局语义信息和局部空间细节的级联神经网络用于脑肿瘤医学图像分割。首先将输入体素分别送入CNN和Transfo... 为解决卷积神经网络(convolutional neural network,CNN)在学习全局上下文信息和边缘细节方面受到很大限制的问题,提出一种同时学习局语义信息和局部空间细节的级联神经网络用于脑肿瘤医学图像分割。首先将输入体素分别送入CNN和Transformer分支,在编码阶段结束后,采用一种双分支融合模块将2个分支学习到的特征有效地结合起来以实现全局信息与局部信息的融合。双分支融合模块利用哈达玛积对双分支特征之间的细粒度交互进行建模,同时使用多重注意力机制充分提取特征图通道和空间信息并抑制无效的噪声信息。在BraTS竞赛官网评估了本文方法,在BraTS2019验证集上增强型肿瘤区、全肿瘤区和肿瘤核心区的Dice分数分别为77.92%,89.20%和81.20%。相较于其他先进的三维医学图像分割方法,本文方法表现出了更好的分割性能,为临床医生做出准确的脑肿瘤细胞评估和治疗方案提供了可靠依据。 展开更多
关键词 医学图像分割 脑肿瘤 级联神经网络 卷积神经网络 TRANSFORMER 特征融合 多重注意力 残差学习
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部