The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
Alzheimer disease(AD) has now become the most common brain disorder among the older population. In addition, the currently existing therapeutics only offer temporary symptomatic relieves. Therefore, further research a...Alzheimer disease(AD) has now become the most common brain disorder among the older population. In addition, the currently existing therapeutics only offer temporary symptomatic relieves. Therefore, further research and development of more efficacious and disease-modifying agents for the prevention, treatment and restoration of AD will have tremendous value from both scientific, and economic standpoints. Over the past few years, our series of studies have identified several highly promising anti-AD dimeric leads, with disease-modifying potentials. In this presentation, the latest progress on the neuroprotective and disease modifying effects and the underlying mechanisms of those candidates will be comprehensively illustrated and discussed.展开更多
OBJECTIVE Bisbenzylisoquinoline(BBI)alkaloids have extensive pharmacological functions.The aim of this study was to investigate the mechanisms underlying the antidepressant-like action of 7-O-ethylfangchinoline(YH-200...OBJECTIVE Bisbenzylisoquinoline(BBI)alkaloids have extensive pharmacological functions.The aim of this study was to investigate the mechanisms underlying the antidepressant-like action of 7-O-ethylfangchinoline(YH-200)in mice.METHODS Male ICR mice were used in the forced swimming(FST)and tail suspension tests(TST).RESULTS YH-200(60mg·kg-1,ig)decreased the immobility time in FST and TST,and prolonged the latency to immobility in FST.YH-200 revealed more potent anti-immobility activity than its BBI derivative tetrandrine.In addition,the pretreatment of mice with prazosin(1mg·kg-1,ip,anα1-adrenoceptor antagonist),propranolol(2 mg·kg-1,ip,a nonselectiveβ-adrenoceptor antagonist),SCH23390(0.05mg·kg-1,ip,a dopamine D1/D5 receptor antagonist),haloperidol(0.2mg·kg-1,ip,a dopamine D2/D3 receptor antagonist)and NBQX(10mg·kg-1,ip,an AMPA receptor antagonist)prevented the antidepressant-like effect of YH-200(60mg·kg-1,ig)in FST.Besides that,the pretreatment of mice with yohimbine(1mg·kg-1,ip,an α2 adrenoceptor antagonist)augmented the antidepressant-like effect of YH-200(30mg·kg-1,ig)in FST.After 14 dadministration,YH-200(30 and 60mg·kg-1,ig)did not develop drug resistance,but the potency was strengthened,meanwhile,it did not influence the changes in mice body weight.CONCLUSION YH-200 may possess the therapeutic potential for the treatment of depression via the multi-targets including the noradrenergic(α1,α2 and β-adrenoceptors),dopaminergic(D1/D5 and D2/D3receptors)and AMPAergic systems.展开更多
This paper presents a newmulti-targets inverse synthetic aperture radar (ISAR) imaging approach via the image segmentation processing. This method can separate multi-targets with similar velocities,and there is no str...This paper presents a newmulti-targets inverse synthetic aperture radar (ISAR) imaging approach via the image segmentation processing. This method can separate multi-targets with similar velocities,and there is no strict limit on the rotational state of the targets. Firstly,the motion compensation for the completely multi-targets echo is carried out and the coarse image can be achieved with the Range-Doppler (RD) technique. Then a series of image processing methods and image segmentation processing are used to separate the echo data of each mono-target. At last,the image with high quality of each target can be achieved with the RD technique and the Range-Instantaneous-Doppler (RID) technique. ISAR imaging results of simulated and measured data validate the validity of the proposed approach.展开更多
<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed bloc...<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>展开更多
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
The escalating severity of Bombyx mori nuclear polyhedrosis virus(BmNPV)infections poses significant challenges to the silkworm industry,especially when massive production shifts occur from the eastern regions to west...The escalating severity of Bombyx mori nuclear polyhedrosis virus(BmNPV)infections poses significant challenges to the silkworm industry,especially when massive production shifts occur from the eastern regions to western regions with lower labor costs.Education and experience levels are different and disease control is badly needed.To solve the problems,we have developed an innovative CRISPR/Cas9 system specifically targeting BmNPV to enhance viral resistance.For the system,we selected BmNPV genes linked to virus replication and proliferation as targets,designing 2 sites for each gene.Mutating the target sequence renders the system incapable of efficiently cleaving the virus genome,hence decreasing cleavage efficiency.We conducted a search for“NGG”or“CCN”target sequences in the BmNPV genome,excluding non-recurring and potential targets in the B.mori genome.We successfully identified 2 distinct target sequences in the BmNPV genome—one being repeated 12 times and the other three times.These sequences lead to fragmentation of virus genome into multiple large segments that are difficult to repair.Transgenic silkworms demonstrate robust resistance to viruses,significantly boosting their survival rates compared with wild-type silkworms under various virus infection concentrations.Our system efficiently targets dozens of viral genomes with just 2 sequences,minimizing transposable elements while ensuring cutting effectiveness.This marks a pioneering advancement by using repetitive elements within the virus genome for targeted CRISPR cleavage,aiming for antiviral effects through genome fragmentation rather than disrupting essential viral genes.Our research introduces innovative concepts to CRISPR antiviral investigations and shows promise for the practical application of gene editing in industrial silkworm strains.展开更多
The more information obtained about the driving environment,the more ensures driving safety.Due to the complex driving environment of farmland roads,targets beside the road sometimes have an important impact on drivin...The more information obtained about the driving environment,the more ensures driving safety.Due to the complex driving environment of farmland roads,targets beside the road sometimes have an important impact on driving safety.To achieve this goal,a novel real-time detection and prediction algorithm of targets was proposed.The whole image was divided into four parts by RCM:driving region,crossroad region,roadside region,and the other region.In addition,a safety policy for every part was enforced by the algorithm,which was based mainly on the combination of the YOLACT and GPM.On this basis,a self-collected data set of 5000 test samples is used for testing.The detection accuracy of the algorithm in the data set could reach up to 90%,and the processing speed to 30.4 fps.In addition,experiments were carried out on actual farmland roads,and the results showed that the proposed algorithm was able to detect,track,and predict targets on the farmland road,and alarm to driver in time before the targets rush into the road.This study provides an important reference for the safe driving of agricultural vehicles.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localizati...Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.展开更多
Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunat...Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunately, in large-scale structures, the rigorous selection of reliable sensor candidates for multi-target responses remains largely unexplored. In this paper, we propose a flexible and generalized framework for selecting the most relevant sensors to the multi-target response and predicting the target response, referred to as the Fast-aware Multi-Target Response Prediction(FMTRP) approach in the spirit of divide-and-conquer. Specifically, first, a multi-task learning module is designed to predict multi-point response tasks at the same time. Simultaneously, we meticulously devise adaptive mechanisms to facilitate loss-term reweighting and encourage prioritization of challenging tasks in multiple prediction tasks. Second, to ensure ease of interpretation,we introduce a hybrid penalty to select sensors at the group-sparsity, individual-sparsity and element-sparsity levels. Finally, due to the substantial number of candidate sensors posing a significant computational burden, we develop a more efficient search strategy and support computation to make the proposed approach applicable in practice, leading to substantial runtime improvements. Extensive experiments on aircraft standard model response datasets and large airliner test flight datasets validate the effectiveness of the proposed approach in identifying sensor locations and simultaneously predicting responses at multiple points. Compared to state-of-the-art methods,the proposed approach achieves an accuracy of over 99% in sinusoidal excitation and exhibits the shortest runtime(3.514 s).展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical ...Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe...A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.展开更多
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p...In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
基金Poly U(G-YBGQ G-SB81+3 种基金 G-YZ95)the Research Grant Council of Hong Kong(15101014)ITSP-Guangdong-Hong Kong Technology Cooperation Funding Scheme(GHP/012/16GD)Shenzhen Basic Research Program(JCYJ20160331141459373)
文摘Alzheimer disease(AD) has now become the most common brain disorder among the older population. In addition, the currently existing therapeutics only offer temporary symptomatic relieves. Therefore, further research and development of more efficacious and disease-modifying agents for the prevention, treatment and restoration of AD will have tremendous value from both scientific, and economic standpoints. Over the past few years, our series of studies have identified several highly promising anti-AD dimeric leads, with disease-modifying potentials. In this presentation, the latest progress on the neuroprotective and disease modifying effects and the underlying mechanisms of those candidates will be comprehensively illustrated and discussed.
基金The project supported by National Natural Science Foundation of China(81173031,81202511 and81302746)
文摘OBJECTIVE Bisbenzylisoquinoline(BBI)alkaloids have extensive pharmacological functions.The aim of this study was to investigate the mechanisms underlying the antidepressant-like action of 7-O-ethylfangchinoline(YH-200)in mice.METHODS Male ICR mice were used in the forced swimming(FST)and tail suspension tests(TST).RESULTS YH-200(60mg·kg-1,ig)decreased the immobility time in FST and TST,and prolonged the latency to immobility in FST.YH-200 revealed more potent anti-immobility activity than its BBI derivative tetrandrine.In addition,the pretreatment of mice with prazosin(1mg·kg-1,ip,anα1-adrenoceptor antagonist),propranolol(2 mg·kg-1,ip,a nonselectiveβ-adrenoceptor antagonist),SCH23390(0.05mg·kg-1,ip,a dopamine D1/D5 receptor antagonist),haloperidol(0.2mg·kg-1,ip,a dopamine D2/D3 receptor antagonist)and NBQX(10mg·kg-1,ip,an AMPA receptor antagonist)prevented the antidepressant-like effect of YH-200(60mg·kg-1,ig)in FST.Besides that,the pretreatment of mice with yohimbine(1mg·kg-1,ip,an α2 adrenoceptor antagonist)augmented the antidepressant-like effect of YH-200(30mg·kg-1,ig)in FST.After 14 dadministration,YH-200(30 and 60mg·kg-1,ig)did not develop drug resistance,but the potency was strengthened,meanwhile,it did not influence the changes in mice body weight.CONCLUSION YH-200 may possess the therapeutic potential for the treatment of depression via the multi-targets including the noradrenergic(α1,α2 and β-adrenoceptors),dopaminergic(D1/D5 and D2/D3receptors)and AMPAergic systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61622107)
文摘This paper presents a newmulti-targets inverse synthetic aperture radar (ISAR) imaging approach via the image segmentation processing. This method can separate multi-targets with similar velocities,and there is no strict limit on the rotational state of the targets. Firstly,the motion compensation for the completely multi-targets echo is carried out and the coarse image can be achieved with the Range-Doppler (RD) technique. Then a series of image processing methods and image segmentation processing are used to separate the echo data of each mono-target. At last,the image with high quality of each target can be achieved with the RD technique and the Range-Instantaneous-Doppler (RID) technique. ISAR imaging results of simulated and measured data validate the validity of the proposed approach.
文摘<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
基金supported by the National Natural Science Foundation Innovation Group Project(32021001)the National Natural Science Foundation of China(32100381 and 31830093)。
文摘The escalating severity of Bombyx mori nuclear polyhedrosis virus(BmNPV)infections poses significant challenges to the silkworm industry,especially when massive production shifts occur from the eastern regions to western regions with lower labor costs.Education and experience levels are different and disease control is badly needed.To solve the problems,we have developed an innovative CRISPR/Cas9 system specifically targeting BmNPV to enhance viral resistance.For the system,we selected BmNPV genes linked to virus replication and proliferation as targets,designing 2 sites for each gene.Mutating the target sequence renders the system incapable of efficiently cleaving the virus genome,hence decreasing cleavage efficiency.We conducted a search for“NGG”or“CCN”target sequences in the BmNPV genome,excluding non-recurring and potential targets in the B.mori genome.We successfully identified 2 distinct target sequences in the BmNPV genome—one being repeated 12 times and the other three times.These sequences lead to fragmentation of virus genome into multiple large segments that are difficult to repair.Transgenic silkworms demonstrate robust resistance to viruses,significantly boosting their survival rates compared with wild-type silkworms under various virus infection concentrations.Our system efficiently targets dozens of viral genomes with just 2 sequences,minimizing transposable elements while ensuring cutting effectiveness.This marks a pioneering advancement by using repetitive elements within the virus genome for targeted CRISPR cleavage,aiming for antiviral effects through genome fragmentation rather than disrupting essential viral genes.Our research introduces innovative concepts to CRISPR antiviral investigations and shows promise for the practical application of gene editing in industrial silkworm strains.
基金supported by Beijing Jiaotong University(C18A800090)China North Vehicle Research Institute.All the support from the above organizations is gratefully acknowledged.
文摘The more information obtained about the driving environment,the more ensures driving safety.Due to the complex driving environment of farmland roads,targets beside the road sometimes have an important impact on driving safety.To achieve this goal,a novel real-time detection and prediction algorithm of targets was proposed.The whole image was divided into four parts by RCM:driving region,crossroad region,roadside region,and the other region.In addition,a safety policy for every part was enforced by the algorithm,which was based mainly on the combination of the YOLACT and GPM.On this basis,a self-collected data set of 5000 test samples is used for testing.The detection accuracy of the algorithm in the data set could reach up to 90%,and the processing speed to 30.4 fps.In addition,experiments were carried out on actual farmland roads,and the results showed that the proposed algorithm was able to detect,track,and predict targets on the farmland road,and alarm to driver in time before the targets rush into the road.This study provides an important reference for the safe driving of agricultural vehicles.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
文摘Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.
基金sponsored by the Innovation Foundation for National Natural Science Foundation of China(No.11872312)。
文摘Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunately, in large-scale structures, the rigorous selection of reliable sensor candidates for multi-target responses remains largely unexplored. In this paper, we propose a flexible and generalized framework for selecting the most relevant sensors to the multi-target response and predicting the target response, referred to as the Fast-aware Multi-Target Response Prediction(FMTRP) approach in the spirit of divide-and-conquer. Specifically, first, a multi-task learning module is designed to predict multi-point response tasks at the same time. Simultaneously, we meticulously devise adaptive mechanisms to facilitate loss-term reweighting and encourage prioritization of challenging tasks in multiple prediction tasks. Second, to ensure ease of interpretation,we introduce a hybrid penalty to select sensors at the group-sparsity, individual-sparsity and element-sparsity levels. Finally, due to the substantial number of candidate sensors posing a significant computational burden, we develop a more efficient search strategy and support computation to make the proposed approach applicable in practice, leading to substantial runtime improvements. Extensive experiments on aircraft standard model response datasets and large airliner test flight datasets validate the effectiveness of the proposed approach in identifying sensor locations and simultaneously predicting responses at multiple points. Compared to state-of-the-art methods,the proposed approach achieves an accuracy of over 99% in sinusoidal excitation and exhibits the shortest runtime(3.514 s).
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金supported by the National Great Science Technology Projects(2018ZX09711001-003-002,2018ZX09711001-012)the National Natural Science Foundation of China(No.81673480)+2 种基金the Beijing National Science Foundation(7192134)CAMS Initiative for Innovative Medicine(CAMS-IZM)(2016-IZM-3-007)CAMS Major collaborative innovation fund for major frontier research(2020-I2M-1-003).
文摘Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
基金jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No. 2016ZC15008)
文摘A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.
文摘In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.